User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_23

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_23 [2017/04/25 09:20] – [The distance between skew lines in $\mathbb{R}^3$] rupertlecture_23 [2017/05/06 09:59] (current) rupert
Line 1: Line 1:
 ===== The distance from a point to a line ===== ===== The distance from a point to a line =====
  
-==== Dot product method ====+==== Cross product method ====
 Suppose $L$ is a line in $\def\rt{\mathbb{R}^3}\def\rn{\mathbb{R}^n}\rt$. Let $A$ be a point on $L$ and let $\def\vv{\vec v}\vv$ be a direction vector along $L$. Suppose $L$ is a line in $\def\rt{\mathbb{R}^3}\def\rn{\mathbb{R}^n}\rt$. Let $A$ be a point on $L$ and let $\def\vv{\vec v}\vv$ be a direction vector along $L$.
  
Line 22: Line 22:
 \[ \def\dist{\text{dist}}\dist(B,L)=\frac{\|\vec{AB}\times\vv\|}{\|\vv\|}=\frac{2\sqrt{7^2+8^2+4^2}}{\sqrt{4^2+1^2+5^2}} = \frac{2\sqrt{129}}{\sqrt{42}} \approx 3.5051.\] \[ \def\dist{\text{dist}}\dist(B,L)=\frac{\|\vec{AB}\times\vv\|}{\|\vv\|}=\frac{2\sqrt{7^2+8^2+4^2}}{\sqrt{4^2+1^2+5^2}} = \frac{2\sqrt{129}}{\sqrt{42}} \approx 3.5051.\]
  
-==== Cross product method ====+==== Dot product method ====
  
 The method above relies on the cross product, so only works in $\def\c#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}}\def\rt{\mathbb{R}^3}\def\rn{\mathbb{R}^n}\def\vv{\vec v}\def\dist{\text{dist}}\rt$. The following alternative method works in $\rn$ for any $n$. The method above relies on the cross product, so only works in $\def\c#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}}\def\rt{\mathbb{R}^3}\def\rn{\mathbb{R}^n}\def\vv{\vec v}\def\dist{\text{dist}}\rt$. The following alternative method works in $\rn$ for any $n$.
Line 92: Line 92:
  
 The formula $\dist(L_1,L_2)=\frac{|\vec{AB}\cdot \nn|}{\|\nn\|}$ where $\nn=\vec v_1\times \vec v_2$ works for The formula $\dist(L_1,L_2)=\frac{|\vec{AB}\cdot \nn|}{\|\nn\|}$ where $\nn=\vec v_1\times \vec v_2$ works for
-  * skew lines (not parallel, not intersecting) +  * skew lines (not parallel, not intersecting), as we saw above, 
-  * actually: any non-parallel lines $L_1$, $L_2$+  * and actually: any non-parallel lines $L_1$, $L_2$. We can see this by noticing that if the lines above intersect, then $L_1$ lies in $\Pi$, so the formula gives $\dist(L_1,L_2)=\dist(B,\Pi)=0$ which is the correct answer.
 What about parallel lines? What about parallel lines?
     * The formula can't work because we'd have $\vec v_1=\vec v_2$ so $\vec n=\vec v_1\times \vec v_2=\vec 0$     * The formula can't work because we'd have $\vec v_1=\vec v_2$ so $\vec n=\vec v_1\times \vec v_2=\vec 0$
lecture_23.1493112027.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki