User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_22_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_22_slides [2016/04/20 12:21] – [Example, again] rupertlecture_22_slides [2017/04/18 09:33] (current) rupert
Line 1: Line 1:
 ~~REVEAL~~ ~~REVEAL~~
  
-==== Last time ====+====== The distance to a plane ====== 
 + 
 +===== Distance from $A$ to $\Pi$ ===== 
 + 
 +  * $\def\dist{\text{dist}}\def\cp#1#2#3#4#5#6{\left|\begin{smallmatrix}\vec\imath&\vec\jmath&\vec k\\#1&#2&#3\\#4&#5&#6\end{smallmatrix}\right|}\def\nn{\vec n}\def\c#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}\def\uu{\vec u}\def\vv{\vec v}\def\ww{\vec w}\def\bR{\mathbb R}\def\rt{\bR^3}A$: any point in $\def\rt{\mathbb R^3}\rt$. $\Pi$: a plane with normal vector $\nn$. 
 +  * $\nn$ is direction of shortest path from $A$ to $\Pi$ 
 +  * Let $B$ be any point in the plane $\Pi$.{{ :dpp.jpg?nolink&600 |}} 
 + 
 +  * (shortest) distance from $A$ to $\Pi$ is $\text{dist}(A,\Pi)=\|\def\pp{\vec p}\pp\|$ 
 +  * where $\pp=\text{proj}_{\nn}{\vec{AB}}$. 
 +  * Do some algebra: we get $\text{dist}(A,\Pi)=\frac{|\nn\cdot\vec{AB}|}{\|\nn\|}$. 
 + 
 +==== Example ==== 
 + 
 +Find the distance from $A=(1,-4,3)$ to the plane $\Pi:2x-3y+6z=1$. 
 +  * choose any point $B$ in $\Pi$, e.g. $B=(2,1,0)$ 
 +  * $\nn=\c2{-3}6$ and $\vec{AB}=\c15{-3}$ 
 +  * So $\def\dist{\text{dist}}\dist(A,\Pi)=\frac{|\nn\cdot\vec{AB}|}{\|\nn\|}=\frac{|2(1)+(-3)5+6(-3)|}{\sqrt{2^2+(-3)^2+6^2}}=\frac{|-31|}{\sqrt{49}}=\frac{31}7$.
  
-  * Take a plane $\Pi$ with normal vector $\def\dist{\text{dist}}\def\cp#1#2#3#4#5#6{\left|\begin{smallmatrix}\vec\imath&\vec\jmath&\vec k\\#1&#2&#3\\#4&#5&#6\end{smallmatrix}\right|}\def\nn{\vec n}\def\c#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}\def\uu{\vec u}\def\vv{\vec v}\def\ww{\vec w}\def\bR{\mathbb R}\def\rt{\bR^3}\nn$ 
-  * Take a point $A$ 
-  * $\dist(A,\Pi)=\frac{|\vec{AB}\cdot \nn|}{\|n\|}$ where $B$ is any point in $\Pi$ 
  
 ==== The distance from the origin to a plane ==== ==== The distance from the origin to a plane ====
Line 113: Line 127:
  
   * $\vec{AB}=\c024$ and $\vv=\c41{-5}$   * $\vec{AB}=\c024$ and $\vv=\c41{-5}$
-  * $\pp=\proj_{\vv}\vec{AB} = \left(\frac{\vec{AB}\cdot \vv}{\|\vv\|^2}\right)\vv = -\frac{3}{7}\c41{-5}$ +  * $\pp=\proj_{\vv}\vec{AB} = \left(\frac{\vec{AB}\cdot \vv}{\|\vv\|^2}\right)\vv = \frac{-18}{42}\c41{-5}= -\frac{3}{7}\c41{-5}$ 
-  * $\nn=\vec{AB}-\pp=\c024-(-\frac37)\c41{-5}=\c024+\frac37\c41{-5}=\frac17\c{12}{17}{13}$ +  * $\nn=\vec{AB}-\pp=\c024-(-\frac37)\c41{-5}=\frac17\c{12}{17}{13}$ 
-  * So $dist(B,L)=\|\nn\|=\frac17\sqrt{12^2+17^2+13^2} = \frac17\sqrt{602} \approx 3.5051$. +  * $\dist(B,L)=\|\nn\|=\frac17\sqrt{12^2+17^2+13^2} \approx 3.5051$.
- +
-===== The distance between skew lines in $\mathbb{R}^3$ ===== +
- +
-Suppose that $L_1$ and $L_2$ are skew lines in $\rt$: lines which are not parallel and do not cross. +
- +
-Let $\vv_1$ be a direction vector along $L_1$, and let $\vv_2$ be a direction vector along $L_2$. +
- +
-{{ :sl1.png?nolink&600 |}} +
- +
-The shortest distance from $L_1$ and $L_2$ is measured along the direction orthogonal to both $\vv_1$ and $\vv_2$, namely the direction of $\nn=\vv_1\times\vv_2$. +
- +
-Let $\Pi$ be the plane with normal vector $\nn$ which contains $L_1$. +
- +
-{{ :sl2.png?nolink&600 |}} +
- +
-For any point $B$ in $L_2$, we have  +
-\[\dist(L_1,L_2)=\dist(B,\Pi) = \frac{|\vec{AB}\cdot \nn|}{\|\nn\|}\] +
-where $A$ is any point in $\Pi$; for example, we can take $A$ to be any point in $L_2$. +
- +
- +
-To summarise: for skew lines $L_1$ and $L_2$ with direction vectors $\vv_1$ and $\vv_2$, we have +
-\[ \dist(L_1,L_2)=\frac{|\vec{AB}\cdot \nn|}{\|\nn\|}\] +
-where $\nn=\vv_1\times\vv_2$ and $A$ and $B$ are points with one in $L_1$ and the other in $L_2$.+
  
-=== Example === 
  
-Consider the skew lines 
-\[ L_1:\c xyz=\c 101+t_1\c123,\quad t_1\in\mathbb{R}\] 
-and  
-\[ L_2:\c xyz=\c 321+t_2\c1{-1}1,\quad t_2\in\mathbb{R}.\] 
-The direction vectors are $\c123$ and $\c1{-1}1$, so we take $\nn$ to be their cross product: 
-\[ \nn=\c123\times\c1{-1}1=\begin{vmatrix}\vec\imath&\vec\jmath&\vec k\\1&2&3\\1&-1&1\end{vmatrix}=\c52{-3}\] 
-and if $A=(1,0,1)$ and $B=(3,2,1)$ then $A$ and $B$ are points with one in $L_1$ and the other in $L_2$, and $\vec{AB}=\c 220$. Hence 
-\[\dist(L_1,L_2)=\frac{|\vec{AB}\cdot \nn|}{\|\nn\|}=\frac{2(5)+2(2)+0(-3)}{\sqrt{5^2+2^2+3^2}} = \frac{14}{\sqrt{38}}.\] 
lecture_22_slides.1461154890.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki