User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_22

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_22 [2016/04/19 08:57] rupertlecture_22 [2017/04/20 09:02] (current) rupert
Line 1: Line 1:
 +
 +====== The distance to a plane ======
 +
 +===== The distance from a point to a plane =====
 +
 +Let $\Pi$ be a plane in $\def\rt{\mathbb{R}^3}\rt$ with equation $ax+by+cz=d$, so that $\def\nn{\vec n}\nn=\def\c#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}}\c abc$ is a normal vector to $\Pi$. Also let $A$ be any point in $\rt$.
 +
 +The shortest path from $A$ to a point in $\Pi$ goes in the same direction as $\nn$. Let $B$ be any point in the plane $\Pi$.
 +
 +{{ :dpp.jpg?nolink&600 |}}
 +
 +From the diagram, we see that the shortest distance from $A$ to $\Pi$ is given by
 +\[ \text{dist}(A,\Pi)=\|\def\pp{\vec p}\pp\|\]
 +where 
 +\[ \pp=\text{proj}_{\nn}{\vec{AB}}.\]
 +Using the formula for $\text{proj}_{\vec w}\vec v$ and the fact that $\|c\vec v\|=|c|\,\|\vec v\|$ where $c$ is a scalar and $\vec v$ is a vector, we obtain the formula
 +\[ \text{dist}(A,\Pi)=\frac{|\nn\cdot\vec{AB}|}{\|\nn\|}.\]
 +
 +==== Example ====
 +
 +To find the distance from  $A=(1,-4,3)$ to the plane $\Pi:2x-3y+6z=1$, choose any point $B$ in $\Pi$; for example, let $B=(2,1,0)$. Then $\nn=\c2{-3}6$ and $\vec{AB}=\c15{-3}$, so 
 +\[ \def\dist{\text{dist}}\dist(A,\Pi)=\frac{|\nn\cdot\vec{AB}|}{\|\nn\|}=\frac{|2(1)+(-3)5+6(-3)|}{\sqrt{2^2+(-3)^2+6^2}}=\frac{|-31|}{\sqrt{49}}=\frac{31}7.\]
  
 ==== Remark: the distance from the origin to a plane ==== ==== Remark: the distance from the origin to a plane ====
Line 35: Line 57:
 \[ \frac{|\tfrac{11}2-4|}{\|\nn\|} = \frac{|\tfrac 32|}{\sqrt{1^2+3^2+(-5)^2}} = \frac3{2\sqrt{35}}.\] \[ \frac{|\tfrac{11}2-4|}{\|\nn\|} = \frac{|\tfrac 32|}{\sqrt{1^2+3^2+(-5)^2}} = \frac3{2\sqrt{35}}.\]
  
 +====== Lines in $\mathbb{R}^3$ ======
 +
 +A line $L$ in $\rt$ has an equation of the form
 +\[ L: \c xyz=\c abc+t\c def, \quad t\in \mathbb R\]
 +where $a,b,c,d,e,f$ are fixed numbers. 
 +
 +The variable $t$ is called a "free parameter": it's "free" because it can take any value, and it's a "parameter" because this is just another name for a variable.
 +
 +The equation above is called a **parametric equation** for the line $L$, because of the free parameter $t$.
 +
 +What do $a,b,c,d,e,f$ mean?
 +    * Set $t=0$: **$A=(a,b,c)$ is a point in $L$**
 +    * Set $t=1$: $B=(a+d,b+e,c+f)$ is another
 +    * So **$\vec {AB}=\c def$ is a direction along $L$**.
 +
 +==== Example ====
 +
 +Find the parametric equation of the line $L$ in $\rt$ which passes through $A=(2,1,-3)$ and $B=(4,-1,5)$.
 +  * Note that $\vec{AB}=\c 2{-2}{8}$
 +  * So this is a direction vector along the line $L$
 +  * So the equation is $ L: \c xyz=\c 21{-3}+t\c 2{-2}8,\quad t\in \mathbb{R}$.
 +  * (Same as $ L: \c xyz=\c 4{-1}5+t\c 2{-2}8,\quad t\in \mathbb{R}$).
  
lecture_22.1461056241.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki