User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_21_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_21_slides [2016/04/14 11:51] – [Example] rupertlecture_21_slides [2017/04/18 09:18] (current) rupert
Line 75: Line 75:
   * Sub in: $d=0-13(3)+17(2)=-39+34=-5$   * Sub in: $d=0-13(3)+17(2)=-39+34=-5$
   * Answer: $-2x-13y+17z=-5$, or $2x+13y-17z=5$.   * Answer: $-2x-13y+17z=-5$, or $2x+13y-17z=5$.
- 
-====== The distance to a plane ====== 
- 
-===== Distance from $A$ to $\Pi$ ===== 
- 
-  * $A$: any point in $\def\rt{\mathbb R^3}\rt$. $\Pi$: a plane with normal vector $\nn$. 
-  * $\nn$ is direction of shortest path from $A$ to $\Pi$ 
-  * Let $B$ be any point in the plane $\Pi$.{{ :dpp.jpg?nolink&600 |}} 
- 
-  * (shortest) distance from $A$ to $\Pi$ is $\text{dist}(A,\Pi)=\|\def\pp{\vec p}\pp\|$ 
-  * where $\pp=\text{proj}_{\nn}{\vec{AB}}$. 
-  * Do some algebra: we get $\text{dist}(A,\Pi)=\frac{|\nn\cdot\vec{AB}|}{\|\nn\|}$. 
- 
-==== Example ==== 
- 
-Find the distance from $A=(1,-4,3)$ to the plane $\Pi:2x-3y+6z=1$. 
-  * choose any point $B$ in $\Pi$, e.g. $B=(2,1,0)$ 
-  * $\nn=\c2{-3}6$ and $\vec{AB}=\c15{-3}$ 
-  * So $\def\dist{\text{dist}}\dist(A,\Pi)=\frac{|\nn\cdot\vec{AB}|}{\|\nn\|}=\frac{|2(1)+(-3)5+6(-3)|}{\sqrt{2^2+(-3)^2+6^2}}=\frac{|-31|}{\sqrt{49}}=\frac{31}7$. 
- 
-==== The distance from the origin to a plane ==== 
- 
-  * We write $0=(0,0,0)$ for the origin in $\rt$ 
-  * Distance from $0$ to a plane $\Pi:ax+by+cz=d$ ? 
-  * Take $B=(d/a,0,0)$ (assuming that $a\ne 0$) 
-  * We get $\dist(0,\Pi)=\frac{|d|}{\|\nn\|}$ where $\nn$ is the normal vector $\nn=\c abc$. 
-  * In particular, if $\nn$ is a unit vector, then $\dist(0,\Pi)=|d|$. 
-  * As $d$ varies (with $\nn$ fixed), we obtain parallel planes at different distances to the origin $0$ 
-  * The larger $d$ is, the further the plane is from $0$. 
- 
-===== The distance between planes ===== 
- 
-  * Let $\Pi_1$ and $\Pi_2$ be two planes. What is the (shortest) distance between them?  
-  * If they're not parallel, they intersect! So $\dist(\Pi_1,\Pi_2)=0$. 
-  * If they're parallel, then $\dist(\Pi_1,\Pi_2)=\dist(A,\Pi_2)$ for any point $A$ in $\Pi_1$. 
-    * Why? 
-    * Since the planes are parallel, $\dist(A,\Pi_2)$ doesn't change if $A$ changes in $\Pi_1$ 
-    * So this is also the shortest distance, for any choice of $A$ in $\Pi_1$ 
- 
- 
-==== Example ==== 
- 
-What is the distance between the planes $3x+4y-2z=5$ and $3x+4y-3z=1$? 
-  * The normal vectors are $\c34{-2}$ and $\c34{-3}$ 
-    * They aren't scalar multiples of one another 
-    * So they're they are in different directions 
-  * So the planes are not parallel. 
-  * So they intersect, and the distance is $0$. 
- 
-==== Example ==== 
- 
-Find the distance between the planes $\Pi_1:3x+4y-2z=5$ and $\Pi_2:3x+4y-2z=1$. 
- 
-  * Same normal vector $\nn=\c34{-2}$, so parallel planes.  
-  * Distance is $\dist(A,\Pi_2)$ where $A$ is any point in $\Pi_1$ 
-    * To find this we also need a point $B$ in $\Pi_2$. 
-  * Choose $A=(1,0,-1)$, $B=(1,0,1)$. 
-  * $\vec {AB}=\c002$ so $\dist(A,\Pi_2) = \frac{|\nn\cdot \vec{AB}|}{\|n\|}=\frac{|0+0+(-2)2|}{\sqrt{3^2+4^2+(-2)^2}} = \frac4{\sqrt{29}}.$ 
- 
-==== Exercise: a formula for the distance between parallel planes ==== 
- 
-Show that the distance between the parallel planes $\Pi_1:ax+by+cz=d_1$ and $\Pi_2:ax+by+cz=d_2$ is \[\dist(\Pi_1,\Pi_2)=\frac{|d_2-d_1|}{\|\nn\|},\] where $\nn=\c abc$. 
- 
-==== Example ==== 
-To find the distance between $x+3y-5z=4$ and $2x+6y-10z=11$ we can rewrite the second equation as $x+3y-5z=11/2$ to see that this is a parallel plane to the first, with common normal vector $\nn=\c13{-5}$. By the formula in the exercise the distance between these planes is 
-\[ \frac{|\tfrac{11}2-4|}{\|\nn\|} = \frac{|\tfrac 32|}{\sqrt{1^2+3^2+(-5)^2}} = \frac3{2\sqrt{35}}.\] 
- 
  
lecture_21_slides.1460634688.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki