User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_21

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_21 [2015/04/16 14:32] – [The area of a triangle] rupertlecture_21 [2017/04/18 09:40] (current) rupert
Line 1: Line 1:
-===== Geometry of the cross product =====+4. Find the equation of the plane containing the points $A=(1,2,0)$, $B=(3,0,1)$ and $C=(4,3,-2)$.
  
-Let $\def\vv{\vec v}\vv$ and $\def\ww{\vec w}\ww$ be vectors in $\def\bR{\mathbb{R}}\bR^3$. +Solution: $\def\nn{\vec n}\def\c#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}}\vec{AB}=\c2{-2}1$ and $\vec{AC}=\c31{-2}$ are both vectors in this plane. We want to find a normal vector $\nnwhich is be orthogonal to both of these. The cross product of two vectors is orthogonal to both, so we can take the cross product of $\vec{AB}$ and $\vec{AC}$: 
 +\[ \nn=\vec{AB}\times\vec{AC}=\def\cp#1#2#3#4#5#6{\begin{vmatrix}\vec\imath&\vec\jmath&\vec k\\#1&#2&#3\\#4&#5&#6\end{vmatrix}}\cp2{-2}131{-2}=\c378\] 
 +so the equation of the plane is $3x+7y+8z=d$, and we find $d$ by subbing in a point in the plane, say $A=(1,2,0)$, which gives $d=3(1)+7(2)+8(0)=17$. So the equation is  
 +\[ 3x+7y+8z=17.\]
  
-==== The area of a triangle ====+==== Orthogonal planes and parallel planes ====
  
-Consider a triangle with sides $\vvand $\ww$ (and third vector, namely $\vv-\ww$). Thinking of $\vv$ as the basethe length of the base is $b=\|\vv\|$ and the height of this triangle (measured at right angles to the base) is $h=\|\ww\|\sin \thetawhere $\theta$ is the angle between $\vv$ and $\ww$.+Let $\Pi_1be plane with normal vector $\nn_1$, and let $\Pi_2be a plane with normal vector $\nn_2$.
  
-{{ :z1.jpg?nolink&500 |}}+  - $\Pi_1$ and $\Pi_2$ are //orthogonal// or //perpendicular// planes if they meet at right angles. The following conditions are equivalent:  
 +    - $\Pi_1$ and $\Pi_2$ are orthogonal planes; 
 +    - $\nn_1\cdot\nn_2=0$; 
 +    - $\nn_1$ is a vector in $\Pi_2$;  
 +    - $\nn_2$ is a vector in $\Pi_1$. 
 +  - $\Pi_1$ and $\Pi_2$ are //parallel// planes if they have the same normal vectors. In other words, if $\Pi_1$ has equation $ax+by+cz=d_1$ then any parallel plane $\Pi_2$ has an equation with the same left hand side$ax+by+cz=d_2$.
  
-Hence the area of this triangle is $\tfrac12 bh=\tfrac12\|\vv\|\,\|\ww\|\sin\theta$, which is equal to $\tfrac12\|\vv\times\ww\|$ (by the formula for $\|\vv\times\ww\|$ which appears above).+=== Examples ===
  
-==== The area of a parallelogram ====+1. Find the equation of the plane $\Pi$ passing through $A=(1,3,-3)$ and $B=(4,-2,1)$ which is orthogonal to the plane $x-y+z=5$.
  
-Consider parallelogramtwo of whose sides are $\vv$ and $\ww$. +Solution: The plane $x-y+z=5$ has normal vector $\c1{-1}1$, so this is vector in $\Pi$. Moreover$\vec{AB}=\c3{-5}4$ is also a vector in $\Pi$, so it has normal vector 
 +\[ \nn=\c1{-1}1\times\c3{-5}4=\cp1{-1}13{-5}4=\c1{-1}{-2}.\] 
 +So the equation of $\Pi$ is $x-y-2z=d$ and subbing in $A=(1,3,-3)$ gives $d=1-3-2(-3)=4$, so the equation of $\Piis \[ x-y-2z=4.\]
  
-{{ :z2b.jpg?nolink&500 |}}+2. The plane parallel to $2x-4y+5z=8$ passing through $(1,2,3)$ is $2x-4y+5z=2(1)-4(2)+5(3) = 10$, or $2x-4y+5z=10$.
  
-This has double the area of the triangle considered above, so its area is $\|\vv\times\ww\|$.+3. Find the equation of the plane $\Pi$ which contains the line of intersection of the planes 
 +\\Pi_1: x-y+2z=1\quad\text{and}\quad \Pi_2: 3x+2y-z=4,\] 
 +and is perpendicular to the plane $\Pi_3:2x+y+z=3$.
  
-=== Example ===+Solution: To find the line of intersection of $\Pi_1$ and $\Pi_2$, we must solve the system of linear equations \begin{gather}x-y+2z=1\\3x+2y-z=4.\end{gather} 
 +We can solve this linear system in the usual way, by applying EROs to the matrix $\begin{bmatrix}1&-1&2&1\\3&2&-1&4\end{bmatrix}$: 
 +\begin{align*}  
 +\def\go#1#2{\begin{bmatrix}#1\\#2\end{bmatrix}} 
 +\def\ar#1{\\[6pt]\xrightarrow{#1}&
 +&\go{1&-1&2&1}{3&2&-1&4} 
 +\ar{R2\to R2-3R1} 
 +\go{1&-1&2&1}{0&5&-7&1} 
 +\ar{R1\to 5R1+R2} 
 +\go{5&0&3&6}{0&5&-7&1} 
 +\ar{R1\to\tfrac15R1,\,R2\to\tfrac15R2} 
 +\go{1&0&3/5&6/5}{0&1&-7/5&1/5} 
 +\end{align*} 
 +So the line $L$ of intersection is given by  
 +\[ L: \c xyz=\c{\tfrac65}{\tfrac15}0+t\c{-\tfrac35}{\tfrac75}1,\quad t\in\mathbb{R}.\] 
 +So $\c{-\tfrac35}{\tfrac75}1$ is a direction vector along $L$, and also $5\c{-\tfrac35}{\tfrac75}1=\c{-3}75$ is a vector along $L$. So $\c{-3}75$ is a vector in the plane $\Pi$. Moreover, taking $t=2$ gives the point $(0,3,2)$ in the line $L$, so this is a point in $\Pi$.
  
-A triangle with two sides $\def\c#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}}\vv=\c13{-1}and $\ww=\c21{-2}$ has area $\tfrac12\|\vv\times\ww\|=\tfrac12\left\|\c13{-1}\times\c21{-2}\right\|=\tfrac12\left\|\c{-5}0{-5}\right\|=\tfrac52\left\|\c{-1}0{-1}\right\|=\tfrac52\sqrt2$, and the parallelogram with sides $\vvand $\ww$ has area $\|\vv\times\ww\|=5\sqrt2$.+Since $\Piis perpendicular to $\Pi_3$, which has normal vector $\nn_3=\c211$, the vector $\c211is in $\Pi$.
  
-==== The volume of a parallelepiped in $\mathbb R^3$ ====+So a normal vector for $\Pi$ is 
 +\[ \nn=\c211\times\c{-3}75 \cp211{-3}75=\c{-2}{-13}{17}\] 
 +hence $\Pi$ has equation $-2x-13y+17z=d$, and subbing in the point $(0,3,2)gives $d=0-13(3)+17(2)=-39+34=-5$, so $\Pi$ has equation $-2x-13y+17z=-5$, or 
 +\[ 2x+13y-17z=5.\]
  
-Let $\def\uu{\vec u}\uu$, $\vv$ and $\ww$ be vectors in $\bR^3$. 
- 
-Consider a [[wp>parallelepiped]], with three sides given by $\uu$, $\vv$ and $\ww$. 
- 
-{{ :z3b.png?nolink&800 |}} 
- 
-Call the face with sides $\vv$ and $\ww$ the base of the parallelpiped. The are of the base is $A=\|\vv\times\ww\|$, and the volume of the parallelpiped is $Ah$ where $h$ is the height, measured at right-angles to the base. 
- 
-One vector which is at right-angles to the base is $\vv\times\ww$. It follows that $h$ is the length of $\vec p=\text{proj}_{\vv\times\ww}\uu$, so 
-\[ h=\|\text{proj}_{\vv\times\ww}\uu\|=\left\|\frac{\uu\cdot(\vv\times\ww)}{\|\vv\times\ww\|^2}\vv\times\ww\right\| = \frac{\uu\cdot(\vv\times\ww)}{\|\vv\times\ww\|^2}\|\vv\times\ww\| = \frac{|\uu\cdot(\vv\times\ww)|}{\|\vv\times\ww\|}\] 
-so the volume is  
-\[ V=Ah=\|\vv\times\ww\|\frac{|\uu\cdot(\vv\times\ww)|}{\|\vv\times\ww\|}\] 
-or 
-\[ V=|\uu\cdot(\vv\times\ww)|,\] 
-so $V$ is the absolute value of the determinant $\begin{vmatrix}u_1&u_2&u_3\\v_1&v_2&v_3\\w_1& w_2&w_3\end{vmatrix}$: 
-\[ V=\left|\quad \begin{vmatrix}u_1&u_2&u_3\\v_1&v_2&v_3\\w_1& w_2&w_3\end{vmatrix}\quad \right|.\] 
- 
-=== Example === 
- 
-Find volume of a parallelepiped whose vertices include $A=(1,1,1)$, $B=(2,1,3)$, $C=(0,2,2)$ and $D=(3,4,1)$, where $A$ is an adjacent vertex to $B$, $C$ and $D$. 
- 
-== Solution == 
- 
-The vectors $\vec{AB}=\c102$, $\vec{AC}=\c{-1}11$ and $\vec{AD}=\c230$ are all edges of this parallepiped, so the volume is 
-\[ V=\left|\quad \begin{vmatrix}1&0&2\\-1&1&1\\2&3&0\end{vmatrix}\quad  \right|  = | 1(0-3)-0+2(-3-2)| = |-13| = 13.\] 
- 
-===== Planes and lines in $\mathbb{R}^3$ ===== 
- 
-Recall that a typical plane in $\bR^3$ has equation 
-\[ ax+by+cz=d\] 
-where $a,b,c,d$ are constants. If we write 
-\[ \def\nn{\vec n}\nn=\c abc\] 
-then we can rewrite the equation of this plane in the form  
-\[ \nn\cdot \c xyz=d.\] 
-If $A=\def\cc#1{(x_{#1},y_{#1},z_{#1})}\cc1$ and $B=\cc2$ are both points in this plane, then the vector $\vec{AB}$ is said to be **in the plane**, or to be **parallel to** the plane. Observe that  
-\[ \vec n\cdot \vec{AB}=\nn\cdot\def\cp#1{\c{x_{#1}}{y_{#1}}{z_{#1}}}\left(\cp2-\cp1\right) = \nn\cdot\cp2-\nn\cdot\cp1=d-d=0,\] 
-so \[\nn\cdot\vv=0\] 
-for every vector $\vv$ in the plane. In other words: the vector $\nn$ is orthogonal to every vector in the plane. 
-{{ :z4b.jpg?nolink&500 |}} 
- 
-We call a vector with this property a **normal** vector to the plane. 
- 
-==== Example ==== 
- 
-Find a unit normal vector to the plane $x+y-3z=4$. 
- 
-=== Solution === 
- 
-The vector $\nn=\c11{-3}$ is a normal vector to this plane, so $\vv=\frac1{\|\nn\|}\nn=\frac1{\sqrt{11}}\c11{-3}$ is a unit normal vector to this plane. Indeed, $\vv$ is a unit vector and it's in the same direction as the normal vector $\nn$, so $\vv$ is also a normal vector. 
lecture_21.1429194771.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki