User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_20_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_20_slides [2016/04/13 15:30] – [Orthogonal planes] rupertlecture_20_slides [2016/04/13 15:43] (current) rupert
Line 157: Line 157:
 Find the equation of the plane $\Pi$ passing through $A=(1,3,-3)$ and $B=(4,-2,1)$ which is orthogonal to the plane $x-y+z=5$. Find the equation of the plane $\Pi$ passing through $A=(1,3,-3)$ and $B=(4,-2,1)$ which is orthogonal to the plane $x-y+z=5$.
  
-  * $x-y+z=5$ has normal vector $\c1{-1}1$, so this is a vector in $\Pi$.  +  * $x-y+z=5$ has normal $\c1{-1}1$this is in $\Pi$.  
-  * $\vec{AB}=\c3{-5}4$ is also a vector in $\Pi$ +  * $\vec{AB}=\def\c#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}\c3{-5}4$ is also a vector in $\Pi$ 
-  * So $\Pi$  has normal vector $\nn=\c1{-1}1\times\c3{-5}4=\cp1{-1}13{-5}4=\c1{-1}{-2}$. +  * Normal for $\Pi$ $\def\nn{\vec n}\nn=\c1{-1}1\times\c3{-5}4=\cp1{-1}13{-5}4=\c1{-1}{-2}$. 
-  * Equation of $\Piis $x-y-2z=d$, and $A=(1,3,-3)in $\Pi$, so $d=1-3-2(-3)=4$ +  * Sub in $A$ (or $B$): get $x-y-2z=4$.
-  * Answer: $x-y-2z=4$.+
  
-4. Find the equation of the plane $\Pi$ which contains the line of intersection of the planes+==== Example 2 ==== 
 + 
 +Find the equation of the plane $\Pi$ which contains the line of intersection of the planes
 \[ \Pi_1: x-y+2z=1\quad\text{and}\quad \Pi_2: 3x+2y-z=4,\] \[ \Pi_1: x-y+2z=1\quad\text{and}\quad \Pi_2: 3x+2y-z=4,\]
 and is perpendicular to the plane $\Pi_3:2x+y+z=3$. and is perpendicular to the plane $\Pi_3:2x+y+z=3$.
  
-Solution: To find the line of intersection of $\Pi_1$ and $\Pi_2$, we must solve the system of linear equations \begin{gather}x-y+2z=1\\3x+2y-z=4.\end{gather} +  * First find the line of intersection of $\Pi_1$ and $\Pi_2$ 
-We can solve this linear system in the usual way, by applying EROs to the matrix $\begin{bmatrix}1&-1&2&1\\3&2&-1&4\end{bmatrix}$: +  * Solve $x-y+2z=1$, $3x+2y-z=4$ 
-\begin{align*}  +  $\left[\begin{smallmatrix}1&-1&2&1\\3&2&-1&4\end{smallmatrix}\right]\to_{EROs}\left[\begin{smallmatrix}1&0&3/5&6/5\\0&1&-7/5&1/5\end{smallmatrix}\right]$ 
-\def\go#1#2{\begin{bmatrix}#1\\#2\end{bmatrix}} +  * Line $L$ of intersection is $\c xyz=\c{6/5}{1/5}0+t\c{-3/5}{7/5}1$$t\in\mathbb{R}$
-\def\ar#1{\\[6pt]\xrightarrow{#1}&} +==== ==== 
-&\go{1&-1&2&1}{3&2&-1&4} +  * $\Pi$ contains $L:\c xyz=\c{6/5}{1/5}0+t\c{-3/5}{7/5}1$$t\in\mathbb{R}$, orthogonal to $\Pi_3: 2x+y+z=3$ 
-\ar{R2\to R2-3R1} +  * $5\c{-3/5}{7/5}1=\c{-3}75$ is a vector along $L$, so in $\Pi$ 
-\go{1&-1&2&1}{0&5&-7&1} +  $\Pi_3$ has  normal vector $\nn_3=\c211$, which is in $\Pi$. 
-\ar{R1\to 5R1+R2} +  * Normal vector for $\Pi$: $\nn=\c211\times\c{-3}75 = \cp211{-3}75=\c{-2}{-13}{17}
-\go{5&0&3&6}{0&5&-7&1} +  * $\Pi$ has equation $-2x-13y+17z=d$ 
-\ar{R1\to\tfrac15R1,\,R2\to\tfrac15R2} +==== ==== 
-\go{1&0&3/5&6/5}{0&1&-7/5&1/5+  * $\Pi$ has equation $-2x-13y+17z=d$ and contains $L:\c xyz=\c{6/5}{1/5}0+t\c{-3/5}{7/5}1$, $t\in\mathbb{R}$ 
-\end{align*+  * Take $t=2$: $(0,3,2)$ in $L$, so in $\Pi$ 
-So the line $L$ of intersection is given by  +  * Sub in: $d=0-13(3)+17(2)=-39+34=-5$ 
-\[ L: \c xyz=\c{\tfrac65}{\tfrac15}0+t\c{-\tfrac35}{\tfrac75}1,\quad t\in\mathbb{R}.\] +  * Answer: $-2x-13y+17z=-5$, or $2x+13y-17z=5$.
-So $\c{-\tfrac35}{\tfrac75}1$ is a direction vector along $L$, and also $5\c{-\tfrac35}{\tfrac75}1=\c{-3}75$ is a vector along $L$. So $\c{-3}75$ is a vector in the plane $\Pi$. Moreover, taking $t=2$ gives the point $(0,3,2)$ in the line $L$, so this is a point in $\Pi$. +
- +
-Since $\Pi$ is perpendicular to $\Pi_3$, which has normal vector $\nn_3=\c211$, the vector $\c211$ is in $\Pi$. +
- +
-So a normal vector for $\Pi$ is +
-\[ \nn=\c211\times\c{-3}75 = \cp211{-3}75=\c{-2}{-13}{17}\] +
-hence $\Pi$ has equation $-2x-13y+17z=d$and subbing in the point $(0,3,2)$ gives $d=0-13(3)+17(2)=-39+34=-5$, so $\Pi$ has equation $-2x-13y+17z=-5$, or +
-\[ 2x+13y-17z=5.\]+
lecture_20_slides.1460561407.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki