User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_20

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_20 [2016/04/12 09:43] rupertlecture_20 [2016/04/14 09:50] (current) rupert
Line 27: Line 27:
 \[ V=Ah=\|\vv\times\ww\|\frac{|\uu\cdot(\vv\times\ww)|}{\|\vv\times\ww\|}\] \[ V=Ah=\|\vv\times\ww\|\frac{|\uu\cdot(\vv\times\ww)|}{\|\vv\times\ww\|}\]
 or or
-\[ V=|\uu\cdot(\vv\times\ww)|,\] +\[ V=|\uu\cdot(\vv\times\ww)|.\] 
-so $V$ is the absolute value of the determinant $\begin{vmatrix}u_1&u_2&u_3\\v_1&v_2&v_3\\w_1& w_2&w_3\end{vmatrix}$: +Now $\uu\cdot(\vv\times \ww)=\det\left(\begin{bmatrix}u_1&u_2&u_3\\v_1&v_2&v_3\\w_1& w_2&w_3\end{bmatrix}\right)$, so $V$ is the absolute value of this determinant
-\[ V=\left|\quad \begin{vmatrix}u_1&u_2&u_3\\v_1&v_2&v_3\\w_1& w_2&w_3\end{vmatrix}\quad \right|.\]+\[ V=\left|\quad\det\left( \begin{bmatrix}u_1&u_2&u_3\\v_1&v_2&v_3\\w_1& w_2&w_3\end{bmatrix}\right)\quad \right|.\]
  
 === Example === === Example ===
Line 56: Line 56:
 We call a vector with this property a **normal** vector to the plane. We call a vector with this property a **normal** vector to the plane.
  
-==== Example ====+==== Examples ====
  
-Find a unit normal vector to the plane $x+y-3z=4$.+1. Find a unit normal vector to the plane $x+y-3z=4$. 
 + 
 +Solution: The vector $\nn=\c11{-3}$ is a normal vector to this plane, so $\vv=\frac1{\|\nn\|}\nn=\frac1{\sqrt{11}}\c11{-3}$ is a unit normal vector to this plane. Indeed, $\vv$ is a unit vector and it's in the same direction as the normal vector $\nn$, so $\vv$ is also a normal vector. 
 + 
 + 
 +2. Find the equation of the plane with normal vector $\def\nn{\vec n}\def\c#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}}\c1{-3}2$ which contains the point $(1,-2,1)$. Then find three other points in this plane. 
 + 
 +Solution: the equation is $x-3y+2z=d$, and we can find $d$ by subbing in $(x,y,z)=(1,-2,1)$: $1-3(-2)+2(1)=d$, so $d=9$ and the equation of the plane is 
 +\[ x-3y+2z=9.\] 
 +Some other points in this plane are $(9,0,0)$, $(0,1,6)$, $(1,1,\tfrac{11}2)$. (We can find these by inspection). 
 + 
 + 
 +3. Find the equation of the plane parallel to the vectors $\c111$ and $\c1{-1}1$ containing the point $(3,0,1)$. 
 + 
 +Solution: a normal vector is $\nn=\c111\times\c1{-1}1=\cp1111{-1}1=\c{2}0{-2}$, so the equation is $2x+0y-2z=2(3)-2(1)=4$, or $2x-2z=4$, or $x-z=2$.
  
-=== Solution === 
  
-The vector $\nn=\c11{-3}$ is a normal vector to this plane, so $\vv=\frac1{\|\nn\|}\nn=\frac1{\sqrt{11}}\c11{-3}$ is a unit normal vector to this plane. Indeed, $\vv$ is a unit vector and it's in the same direction as the normal vector $\nn$, so $\vv$ is also a normal vector. 
lecture_20.1460454220.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki