User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
lecture_2 [2015/01/22 10:39] – created rupertlecture_2 [2015/01/22 11:07] (current) – [Linear equations (in general)] rupert
Line 6: Line 6:
  
 === Examples === === Examples ===
 +
 +Note: you can view the examples below from different angles, by clicking the "Rotate 3D graphics view" button.
 +{{ screenshot_from_2015-01-22_10_40_28.png?nolink }}
  
   * $x+y+z=1$ <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/528999/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html>   * $x+y+z=1$ <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/528999/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html>
   * $x+y=1$ This may be viewed as a linear equation in 3 variables, since it is equivalent to $x+y+0z=1$. <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529043/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html>   * $x+y=1$ This may be viewed as a linear equation in 3 variables, since it is equivalent to $x+y+0z=1$. <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529043/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html>
   * $z=1$, viewed as the equation $0x+0y+z=1$ <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529069/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe><br /></html>This plane is horizontal (parallel to the $x$-$y$ plane).   * $z=1$, viewed as the equation $0x+0y+z=1$ <html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529069/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe><br /></html>This plane is horizontal (parallel to the $x$-$y$ plane).
 +
 +==== Linear equations (in general) ====
 +
 +{{page>linear equation}}
 +
 +=== Example ===
 +
 +\[ 3x_1+5x_2-7x_3+11x_4=12\] is a linear equation in 4 variables. 
 +
 +  * A typical solution will be a point $(x_1,x_2,x_3,x_4)\in \mathbb{R}^4$ so that $3x_1+5x_2-7x_3+11x_4$ really does equal $12$. 
 +  * For example, $(-2,0,-1,1)$ is a solution. 
 +  * The set of all solutions is a 3-dimensional object in $\mathbb{R}^4$, called a [[wp>hyperplane]]. 
 +  * Since we can't draw pictures in 4-dimensional space $\mathbb{R^4}$ we can't draw this set of solutions!
 +
 +==== Systems of linear equations ====
 +
 +{{page>system of linear equations}}
 +
 +=== Example ===
 +Find the line of intersection of the two planes 
 +\[ x+3y+z=5\] and \[ 2x+7y+4z=17.\]
 +
 +Just to get an idea of what's going on, here's a picture of the two planes:
 +
 +<html><iframe scrolling="no" src="https://tube.geogebra.org/material/iframe/id/529147/width/800/height/503/border/888888/rc/true/ai/false/sdz/true/smb/false/stb/true/stbh/true/ld/false/sri/true/at/auto" width="800px" height="503px" style="border:0px;"> </iframe></html>
 +
 +To find the equation of the line of intersection, we must find the points which are solutions of //both// equations at the same time. Eliminating variables, we get
 +\[ x=-16+5z,\quad y=7-2z\]
 +which tells us that for any value of $z$, the point 
 +\[ (-16+5z,7-2z,z)\]
 +is a typical point in the line of intersection.
lecture_2.1421923171.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki