Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_19
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| lecture_19 [2017/04/11 09:56] – [Corollary: the length of $\vec v\times\vec w$] rupert | lecture_19 [2017/05/06 10:14] (current) – rupert | ||
|---|---|---|---|
| Line 14: | Line 14: | ||
| - Since $\nn=\vv-\pp$ is orthogonal to $\ww$, we have $\nn\cdot \ww=0$. Hence \begin{align*}&& | - Since $\nn=\vv-\pp$ is orthogonal to $\ww$, we have $\nn\cdot \ww=0$. Hence \begin{align*}&& | ||
| - | So | + | {{anchor: |
| \[ \pp=\ppp=\frac{\vv\cdot\ww}{\|\ww\|^2}\ww.\] | \[ \pp=\ppp=\frac{\vv\cdot\ww}{\|\ww\|^2}\ww.\] | ||
| Line 80: | Line 80: | ||
| - Observe that $\uu\cdot (\vv\times \ww)=\vm{u_1& | - Observe that $\uu\cdot (\vv\times \ww)=\vm{u_1& | ||
| - | ==== Theorem ==== | + | ==== Theorem: the dot product/ |
| For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, | For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, | ||
| \[ \|\vv\times\ww\|^2+(\vv\cdot\ww)^2=\|\vv\|^2\, | \[ \|\vv\times\ww\|^2+(\vv\cdot\ww)^2=\|\vv\|^2\, | ||
lecture_19.1491904575.txt.gz · Last modified: by rupert
