User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_19

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_19 [2017/04/11 09:56] – [Corollary: the length of $\vec v\times\vec w$] rupertlecture_19 [2017/05/06 10:14] (current) rupert
Line 14: Line 14:
   - Since $\nn=\vv-\pp$ is orthogonal to $\ww$, we have $\nn\cdot \ww=0$. Hence \begin{align*}&&(\vv-\pp)\cdot \ww&=0\\&\implies& \vv\cdot\ww-\pp\cdot\ww&=0\\&\implies& \pp\cdot\ww&=\vv\cdot\ww\\&\implies& c\ww\cdot \ww&=\vv\cdot\ww\\&\implies& c\|\ww\|^2&=\vv\cdot\ww\\&\implies& c&=\frac{\vv\cdot\ww}{\|\ww\|^2}.\end{align*}   - Since $\nn=\vv-\pp$ is orthogonal to $\ww$, we have $\nn\cdot \ww=0$. Hence \begin{align*}&&(\vv-\pp)\cdot \ww&=0\\&\implies& \vv\cdot\ww-\pp\cdot\ww&=0\\&\implies& \pp\cdot\ww&=\vv\cdot\ww\\&\implies& c\ww\cdot \ww&=\vv\cdot\ww\\&\implies& c\|\ww\|^2&=\vv\cdot\ww\\&\implies& c&=\frac{\vv\cdot\ww}{\|\ww\|^2}.\end{align*}
  
-So +{{anchor:proj}}So we obtain the **orthogonal projection formula**:
 \[ \pp=\ppp=\frac{\vv\cdot\ww}{\|\ww\|^2}\ww.\] \[ \pp=\ppp=\frac{\vv\cdot\ww}{\|\ww\|^2}\ww.\]
  
Line 80: Line 80:
   - Observe that $\uu\cdot (\vv\times \ww)=\vm{u_1&u_2&u_3\\v_1&v_2&v_3\\w_1&w_2&w_3}$. The determinant of a matrix with a repeated row is zero, so \[\vv\cdot (\vv\times \ww)=\vm{v_1&v_2&v_3\\v_1&v_2&v_3\\w_1&w_2&w_3}=0\] so $\vv$ is orthogonal to $\vv\times\ww$; and similarly, \[\ww\cdot(\vv\times \ww)=\vm{w_1&w_2&w_3\\v_1&v_2&v_3\\w_1&w_2&w_3}=0\] so $\ww$ is orthogonal to $\vv\times\ww$. ■    - Observe that $\uu\cdot (\vv\times \ww)=\vm{u_1&u_2&u_3\\v_1&v_2&v_3\\w_1&w_2&w_3}$. The determinant of a matrix with a repeated row is zero, so \[\vv\cdot (\vv\times \ww)=\vm{v_1&v_2&v_3\\v_1&v_2&v_3\\w_1&w_2&w_3}=0\] so $\vv$ is orthogonal to $\vv\times\ww$; and similarly, \[\ww\cdot(\vv\times \ww)=\vm{w_1&w_2&w_3\\v_1&v_2&v_3\\w_1&w_2&w_3}=0\] so $\ww$ is orthogonal to $\vv\times\ww$. ■ 
  
-==== Theorem ====+==== Theorem: the dot product/cross product length formula ====
 For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, we have For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, we have
 \[ \|\vv\times\ww\|^2+(\vv\cdot\ww)^2=\|\vv\|^2\,\|\ww\|^2.\] \[ \|\vv\times\ww\|^2+(\vv\cdot\ww)^2=\|\vv\|^2\,\|\ww\|^2.\]
lecture_19.1491904575.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki