User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_19

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_19 [2016/04/12 09:41] – [Corollary: the length of $\vec v\times\vec w$] rupertlecture_19 [2017/05/06 10:14] (current) rupert
Line 1: Line 1:
 +
 +===== The orthogonal projection of one vector onto another =====
 +
 +Let $\def\ww{\vec{w}}\def\vv{\vec{v}}\def\uu{\vec{u}}\ww$ be a non-zero vector, and let $\vv$ be any vector. We call a vector $\def\pp{\vec p}\def\nn{\vec{n}}\pp$ the **orthogonal projection of $\vv$ onto $\ww$**, and write $\pp=\def\ppp{\text{proj}_{\ww}\vv}\ppp$, if
 +
 +  - $\pp$ is in the same direction as $\ww$; and
 +  - the vector $\nn=\vv-\pp$ joining the end of $\pp$ to the end of $\vv$ is orthogonal to $\ww$.
 +
 +{{ :t3.png?nolink&300 |}}
 +
 +We can use these properties of $\pp$ to find a formula for $\pp$ in terms of $\vv$ and $\ww$.
 +
 +  - Since  $\pp$ is in the same direction as $\ww$, we have $\pp=c\ww$ for some scalar $c\in \mathbb{R}$.
 +  - Since $\nn=\vv-\pp$ is orthogonal to $\ww$, we have $\nn\cdot \ww=0$. Hence \begin{align*}&&(\vv-\pp)\cdot \ww&=0\\&\implies& \vv\cdot\ww-\pp\cdot\ww&=0\\&\implies& \pp\cdot\ww&=\vv\cdot\ww\\&\implies& c\ww\cdot \ww&=\vv\cdot\ww\\&\implies& c\|\ww\|^2&=\vv\cdot\ww\\&\implies& c&=\frac{\vv\cdot\ww}{\|\ww\|^2}.\end{align*}
 +
 +{{anchor:proj}}So we obtain the **orthogonal projection formula**:
 +\[ \pp=\ppp=\frac{\vv\cdot\ww}{\|\ww\|^2}\ww.\]
 +
 +We call $\nn=\vv-\ppp$ the component of $\vv$ orthogonal to $\ww$.
 +
 +
  
 === Example === === Example ===
Line 59: Line 80:
   - Observe that $\uu\cdot (\vv\times \ww)=\vm{u_1&u_2&u_3\\v_1&v_2&v_3\\w_1&w_2&w_3}$. The determinant of a matrix with a repeated row is zero, so \[\vv\cdot (\vv\times \ww)=\vm{v_1&v_2&v_3\\v_1&v_2&v_3\\w_1&w_2&w_3}=0\] so $\vv$ is orthogonal to $\vv\times\ww$; and similarly, \[\ww\cdot(\vv\times \ww)=\vm{w_1&w_2&w_3\\v_1&v_2&v_3\\w_1&w_2&w_3}=0\] so $\ww$ is orthogonal to $\vv\times\ww$. ■    - Observe that $\uu\cdot (\vv\times \ww)=\vm{u_1&u_2&u_3\\v_1&v_2&v_3\\w_1&w_2&w_3}$. The determinant of a matrix with a repeated row is zero, so \[\vv\cdot (\vv\times \ww)=\vm{v_1&v_2&v_3\\v_1&v_2&v_3\\w_1&w_2&w_3}=0\] so $\vv$ is orthogonal to $\vv\times\ww$; and similarly, \[\ww\cdot(\vv\times \ww)=\vm{w_1&w_2&w_3\\v_1&v_2&v_3\\w_1&w_2&w_3}=0\] so $\ww$ is orthogonal to $\vv\times\ww$. ■ 
  
-==== Theorem ====+==== Theorem: the dot product/cross product length formula ====
 For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, we have For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, we have
 \[ \|\vv\times\ww\|^2+(\vv\cdot\ww)^2=\|\vv\|^2\,\|\ww\|^2.\] \[ \|\vv\times\ww\|^2+(\vv\cdot\ww)^2=\|\vv\|^2\,\|\ww\|^2.\]
  
-The proof is a tedious but elementary calculationwhich we leave as an exercise.+=== Proof === 
 +Let $D$ be the sum of $v_i^2w_j^2$ over all $i,j\in\{1,2,3\}$ with $i=j$. (So $D=v_1^2w_1^2+v_2^2w_2^2+v_3^2w_3^2$.) 
 + 
 +Let $F$ be the sum of $v_i^2w_j^2$ over all $i,j\in\{1,2,3\}$ with $i\ne j$. (So $F=v_1^2w_2^2+v_2^2w_1^2+\dots+v_3^2w_2^2$, with 6 terms on the right hand side.) 
 + 
 +Let $C$ be the sum of $v_iw_iv_jw_j$ over all $i,j\in\{1,2,3\}$ with $i<j$. (So $C=v_1w_1v_2w_2+v_1w_1v_3w_3+v_2w_2v_3w_3$.) 
 + 
 +Then $D+F$ is the sum of $v_i^2w_j^2$ over all $i,j\in \{1,2,3\}$. 
 + 
 +Expanding the formulae for $\|\vv\|^2$ and $\|\ww\|^2$, we get $\|\vv\|^2\|\ww\|^2=D+F$. 
 + 
 +Expanding the formula for the cross product, we get $\|\vv\times\ww\|^2=F-2C$. 
 + 
 +Expanding the formula for the dot product, we get $(v\cdot w)^2=D+2C$. 
 + 
 +So $\|\vv\times\ww\|^2+(v\cdot w)^2=F-2C+D+2C=F+D=\|\vv\|^2\|\ww\|^2.■$ 
  
 ==== Corollary: the length of $\vec v\times\vec w$ ==== ==== Corollary: the length of $\vec v\times\vec w$ ====
Line 69: Line 106:
 For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, we have For any vectors $\vv$ and $\ww$ in $\mathbb{R}^3$, we have
 \[ \|\vv\times\ww\|=\|\vv\|\,\|\ww\|\,\sin\theta\] \[ \|\vv\times\ww\|=\|\vv\|\,\|\ww\|\,\sin\theta\]
-where $\theta$ is the angle between $\vv$ and $\ww$ (with $0\le\theta<\pi$).+where $\theta$ is the angle between $\vv$ and $\ww$ (with $0\le\theta\le\pi$).
  
 === Proof === === Proof ===
Line 78: Line 115:
 &=\|\vv\|^2\,\|\ww\|^2(1-\cos^2\theta)\\ &=\|\vv\|^2\,\|\ww\|^2(1-\cos^2\theta)\\
 &=\|\vv\|^2\,\|\ww\|^2\sin^2\theta.\end{align*} &=\|\vv\|^2\,\|\ww\|^2\sin^2\theta.\end{align*}
-Since $\sqrt {a^2}=a$ if $a\ge0$ and $\sin\theta\ge0$ for $0\le\theta<\pi$, taking square roots of both sides gives+Since $\sqrt {a^2}=a$ if $a\ge0$ and $\sin\theta\ge0$ for $0\le\theta\le\pi$, taking square roots of both sides gives
 \[ \|\vv\times\ww\|=\|\vv\|\,\|\ww\|\,\sin\theta. ■ \] \[ \|\vv\times\ww\|=\|\vv\|\,\|\ww\|\,\sin\theta. ■ \]
  
Line 92: Line 129:
  
 Hence the area of this triangle is $\tfrac12 bh=\tfrac12\|\vv\|\,\|\ww\|\sin\theta$, which is equal to $\tfrac12\|\vv\times\ww\|$ (by the formula for $\|\vv\times\ww\|$ which appears above). Hence the area of this triangle is $\tfrac12 bh=\tfrac12\|\vv\|\,\|\ww\|\sin\theta$, which is equal to $\tfrac12\|\vv\times\ww\|$ (by the formula for $\|\vv\times\ww\|$ which appears above).
- 
-==== The area of a parallelogram ==== 
- 
-Consider a parallelogram, two of whose sides are $\vv$ and $\ww$.  
- 
-{{ :z2b.jpg?nolink&500 |}} 
- 
-This has double the area of the triangle considered above, so its area is $\|\vv\times\ww\|$. 
- 
-=== Example === 
- 
-A triangle with two sides $\def\c#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}}\vv=\c13{-1}$ and $\ww=\c21{-2}$ has area $\tfrac12\|\vv\times\ww\|=\tfrac12\left\|\c13{-1}\times\c21{-2}\right\|=\tfrac12\left\|\c{-5}0{-5}\right\|=\tfrac52\left\|\c{-1}0{-1}\right\|=\tfrac52\sqrt2$, and the parallelogram with sides $\vv$ and $\ww$ has area $\|\vv\times\ww\|=5\sqrt2$. 
- 
-==== The volume of a parallelepiped in $\mathbb R^3$ ==== 
- 
-Let $\def\uu{\vec u}\uu$, $\vv$ and $\ww$ be vectors in $\bR^3$. 
- 
-Consider a [[wp>parallelepiped]], with three sides given by $\uu$, $\vv$ and $\ww$. 
- 
-{{ :z3b.png?nolink&800 |}} 
- 
-Call the face with sides $\vv$ and $\ww$ the base of the parallelpiped. The area of the base is $A=\|\vv\times\ww\|$, and the volume of the parallelpiped is $Ah$ where $h$ is the height, measured at right-angles to the base. 
- 
-One vector which is at right-angles to the base is $\vv\times\ww$. It follows that $h$ is the length of $\vec p=\text{proj}_{\vv\times\ww}\uu$, so 
-\[ h=\|\text{proj}_{\vv\times\ww}\uu\|=\left\|\frac{\uu\cdot(\vv\times\ww)}{\|\vv\times\ww\|^2}\vv\times\ww\right\| = \frac{\uu\cdot(\vv\times\ww)}{\|\vv\times\ww\|^2}\|\vv\times\ww\| = \frac{|\uu\cdot(\vv\times\ww)|}{\|\vv\times\ww\|}\] 
-so the volume is  
-\[ V=Ah=\|\vv\times\ww\|\frac{|\uu\cdot(\vv\times\ww)|}{\|\vv\times\ww\|}\] 
-or 
-\[ V=|\uu\cdot(\vv\times\ww)|,\] 
-so $V$ is the absolute value of the determinant $\begin{vmatrix}u_1&u_2&u_3\\v_1&v_2&v_3\\w_1& w_2&w_3\end{vmatrix}$: 
-\[ V=\left|\quad \begin{vmatrix}u_1&u_2&u_3\\v_1&v_2&v_3\\w_1& w_2&w_3\end{vmatrix}\quad \right|.\] 
- 
-=== Example === 
- 
-Find volume of a parallelepiped whose vertices include $A=(1,1,1)$, $B=(2,1,3)$, $C=(0,2,2)$ and $D=(3,4,1)$, where $A$ is an adjacent vertex to $B$, $C$ and $D$. 
- 
-== Solution == 
- 
-The vectors $\vec{AB}=\c102$, $\vec{AC}=\c{-1}11$ and $\vec{AD}=\c230$ are all edges of this parallepiped, so the volume is 
-\[ V=\left|\quad \begin{vmatrix}1&0&2\\-1&1&1\\2&3&0\end{vmatrix}\quad  \right|  = | 1(0-3)-0+2(-3-2)| = |-13| = 13.\] 
- 
  
lecture_19.1460454083.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki