User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_18_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_18_slides [2017/04/05 15:24] – [Proof of the geometric dot product formula] rupertlecture_18_slides [2017/04/10 16:30] (current) – [Proof of the geometric dot product formula] rupert
Line 75: Line 75:
   * Consider a triangle with two sides $\vv$ and $\ww$. By the triangle rule for vector addition, the third side is $\vv-\ww$:{{ :t2.png?nolink&400|}}   * Consider a triangle with two sides $\vv$ and $\ww$. By the triangle rule for vector addition, the third side is $\vv-\ww$:{{ :t2.png?nolink&400|}}
   * Use the cosine rule with $A=\theta$, $a=\|\vv-\ww\|$, $b=\|\vv\|$, $c=\|\ww\|$    * Use the cosine rule with $A=\theta$, $a=\|\vv-\ww\|$, $b=\|\vv\|$, $c=\|\ww\|$ 
-  * $ \|\vv-\ww\|^2=\|\vv\|\,\|\ww\|-2\|\vv\|\,\|\ww\|\,\cos\theta$+  * $ \|\vv-\ww\|^2=\|\vv\|^2+\|\ww\|^2-2\|\vv\|\,\|\ww\|\,\cos\theta$
  
-==== Proof, continued====+==== Proof of the geometric dot product formula, continued====
  
-We wish to show that $\def\vv{\vec v} +Aim: $\def\vv{\vec v} 
-\def\ww{\vec w}\vv\cdot\ww=\|\vv\|\,\|\ww\|\cos\theta$ where $\theta$ is the angle between $\vv$ and $\ww$. +\def\ww{\vec w}\vv\cdot\ww=\|\vv\|\,\|\ww\|\cos\theta$.
  
-  * $ \|\vv-\ww\|^2=\|\vv\|\,\|\ww\|-2\vv\cdot\ww\cos\theta.+  * $\|\vv-\ww\|^2=\|\vv\|^2+\|\ww\|^2-2\|\vv\|\,\|\ww\|\,\cos\theta$ 
-  * We know that $\|\vec x\|^2=\vec x\cdot\vec x$ +  * So $2\|\vv\|\,\|\ww\|\cos\theta=\|\vv\|^2+\|\ww\|^2-\|\vv-\ww\|^2
-  * So $\|\vv-\ww\|^2=(\vv-\ww)\cdot(\vv-\ww)$ +    * $=\vv\cdot\vv+\ww\cdot\ww-(\vv-\ww)\cdot(\vv-\ww)$ 
-    * $=\vv\cdot\vv+\ww\cdot\ww-\ww\cdot\vv-\vv\cdot\ww$ +    * $=\vv\cdot\vv+\ww\cdot\ww-(\vv\cdot\vv+\ww\cdot\ww-\ww\cdot\vv-\vv\cdot\ww)
-    * $=\|\vv\|^2+\|\ww\|^2-2\vv\cdot\ww$. +    * $=2\vv\cdot\ww$. 
-  * So $\|\vv\|\,\|\ww\|-2\vv\cdot\ww\cos\theta=\|\vv\|^2+\|\ww\|^2-2\vv\cdot\ww$+  * So $2\vv\cdot\ww=2\|\vv\|\,\|\ww\|\,\cos\theta$
   * So $\vv\cdot\ww=\|\vv\|\,\|\ww\|\cos\theta$. ■    * So $\vv\cdot\ww=\|\vv\|\,\|\ww\|\cos\theta$. ■ 
  
Line 94: Line 94:
 If $\vv$ and $\ww$ are non-zero vectors and $\theta$ is the angle between them, then $\cos\theta=\displaystyle\frac{\vv\cdot\ww}{\|\vv\|\,\|\ww\|}$. If $\vv$ and $\ww$ are non-zero vectors and $\theta$ is the angle between them, then $\cos\theta=\displaystyle\frac{\vv\cdot\ww}{\|\vv\|\,\|\ww\|}$.
  
 +  * Proof: since $\vv$ and $\ww$ are non-zero, we have $\|\vv\|\,\|\ww\|\ne0$ so we can divide both sides of the geometric dot product formula by $\|\vv\|\,\|\ww\|$ to get the angle formula.
 ==== Example 1 ==== ==== Example 1 ====
  
 What is the angle $\theta$ between $\def\c#1#2{\left[\begin{smallmatrix}{#1}\\{#2}\end{smallmatrix}\right]}\c12$ and $\c3{-4}$? What is the angle $\theta$ between $\def\c#1#2{\left[\begin{smallmatrix}{#1}\\{#2}\end{smallmatrix}\right]}\c12$ and $\c3{-4}$?
-  * $ \cos\theta=\frac{\c12\cdot\c3{-4}}{\left\|\c12\right\|\,\left\|\c3{-4}\right\|} =\frac{3-8}{\sqrt5\sqrt{25}}=-\frac1{\sqrt5}$ +  * Use the angle formula $\cos\theta=\frac{\vv\cdot\ww}{\|\vv\|\,\|\ww\|}$: 
-  * So $\theta=\cos^{-1}(-1/\sqrt5) \approx 2.03\,\text{radians}\approx 116.57^\circ$.+  * $ \cos\theta=\frac{\c12\cdot\c3{-4}}{\left\|\c12\right\|\,\left\|\c3{-4}\right\|} =\frac{3-8}{\sqrt5\sqrt{25}}=\frac{-5}{5\sqrt 5}=-\frac1{\sqrt5}$ 
 +  * So $\theta=\cos^{-1}(-\tfrac1{\sqrt5}) \approx 2.03\,\text{radians}\approx 116.57^\circ$.
  
 ==== Corollary 2: orthogonal vectors ==== ==== Corollary 2: orthogonal vectors ====
 If $\vv$ and $\ww$ are non-zero vectors with $\vv\cdot\ww=0$, then $\vv$ and $\ww$ are **orthogonal**: they are at right-angles. If $\vv$ and $\ww$ are non-zero vectors with $\vv\cdot\ww=0$, then $\vv$ and $\ww$ are **orthogonal**: they are at right-angles.
 +  *Proof: the angle formula gives $\cos \theta=\frac{\vv\cdot\ww}{\|\vv\|\,\|\ww\|}=0$ 
 +  *So $\cos\theta=0$ 
 +  *So $\theta$ is a right-angle.
 ==== Example 2 ==== ==== Example 2 ====
 Prove that $A=(2,3)$, $B=(3,6)$ and $C=(-4,5)$ are the vertices of a right-angled triangle. Prove that $A=(2,3)$, $B=(3,6)$ and $C=(-4,5)$ are the vertices of a right-angled triangle.
Line 116: Line 120:
   * Observe that $\ww=\c{-2}1$ has $\vv\cdot\ww=0$   * Observe that $\ww=\c{-2}1$ has $\vv\cdot\ww=0$
   * So $\vv$ and $\ww$ are orthogonal   * So $\vv$ and $\ww$ are orthogonal
-  * $\vec u=\frac1{\|\ww\|}\ww$ is a unit vector in the same direction as $\ww$, (so is also orthogonal to $\vv$)+  * $\vec u=\frac1{\|\ww\|}\ww$ is a unit vector in the same direction as $\ww$ 
 +    * so it is also orthogonal to $\vv$.
   * So $\vec u=\frac1{\sqrt5}\c{-2}1=\c{-2/\sqrt5}{1/\sqrt5}$ is a unit vector orthogonal to $\vv=\c12$.   * So $\vec u=\frac1{\sqrt5}\c{-2}1=\c{-2/\sqrt5}{1/\sqrt5}$ is a unit vector orthogonal to $\vv=\c12$.
  
-===== Orthogonal projection ===== 
- 
-Let $\def\pp{\vec p}\def\ww{\vec w}\def\vv{\vec v}\def\nn{\vec n}\ww$ non-zero, and $\vv$ any vector.  
- 
-$\pp$ is the **orthogonal projection of $\vv$ onto $\ww$** if: 
- 
-  - $\pp$ is in the same direction as $\ww$; and 
-  - the vector $\nn=\vv-\pp$ is orthogonal to $\ww$. 
- 
-  * {{ :t3.png?nolink&400 |}} 
- 
-  * We write $\pp=\def\ppp{\text{proj}_{\ww}\vv}\ppp$. 
-  * $\nn=\vv-\pp$ is **the component of $\vv$ orthogonal to $\ww$**. 
- 
- 
-==== Formula for $\pp=\ppp$ ==== 
- 
-  * $\pp$ same direction as $\ww$, so $\pp=c\ww$, some scalar $c$ 
-  * $\nn=\vv-\pp$ is orthogonal to $\ww$, so $\nn\cdot \ww=0$. 
-    * so $(\vv-\pp)\cdot \ww=0$ 
-    * so $\vv\cdot\ww-\pp\cdot\ww=0$ 
-    * so $\pp\cdot\ww=\vv\cdot\ww$ 
-    * so $c\ww\cdot \ww=\vv\cdot\ww$ 
-    * so $c\|\ww\|^2=\vv\cdot\ww$ 
-    * so $c=\frac{\vv\cdot\ww}{\|\ww\|^2}$. 
-  * So $\color{blue}{\pp=\ppp=\frac{\vv\cdot\ww}{\|\ww\|^2}\ww}.$ 
- 
- 
-==== Example ==== 
  
-$\vv=\def\c#1#2#3{\left[\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\right]}\c12{-1}$ and $\ww=\c2{-1}4$ 
-  * $\ppp=\frac{\vv\cdot\ww}{\|\ww\|^2}\ww$ 
-    * $=\frac{2-2-4}{2^2+(-1)^2+4^2}\c2{-1}4$ 
-    * $=-\frac4{21}\c2{-1}4$ 
-  * component of $\vv$ orthogonal to $\ww$ is $\nn=\vv-\ppp$ 
-    * $\nn=\c12{-1}-\left(-\frac4{21}\right)\c2{-1}4=\frac1{21}\c{29}{38}{-5}$. 
lecture_18_slides.1491405858.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki