User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_18

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
lecture_18 [2017/04/04 13:52] – [The orthogonal projection of one vector onto another] rupertlecture_18 [2017/04/06 10:04] (current) rupert
Line 67: Line 67:
   - To find a unit vector orthogonal to the vector $\vv=\c12$, we can first observe that $\ww=\c{-2}1$ has $\vv\cdot\ww=0$, so $\vv$ and $\ww$ are orthogonal; and then consider the vector $\vec u=\frac1{\|\ww\|}\ww$, which is a unit vector in the same direction as $\ww$, so is also orthogonal to $\vv$. Hence $\vec u=\frac1{\sqrt5}\c{-2}1=\c{-2/\sqrt5}{1/\sqrt5}$ is a unit vector orthogonal to $\vv=\c12$.   - To find a unit vector orthogonal to the vector $\vv=\c12$, we can first observe that $\ww=\c{-2}1$ has $\vv\cdot\ww=0$, so $\vv$ and $\ww$ are orthogonal; and then consider the vector $\vec u=\frac1{\|\ww\|}\ww$, which is a unit vector in the same direction as $\ww$, so is also orthogonal to $\vv$. Hence $\vec u=\frac1{\sqrt5}\c{-2}1=\c{-2/\sqrt5}{1/\sqrt5}$ is a unit vector orthogonal to $\vv=\c12$.
  
-===== The orthogonal projection of one vector onto another ===== 
- 
-Let $\ww$ be a non-zero vector, and let $\vv$ be any vector. We call a vector $\def\pp{\vec p}\def\nn{\vec{n}}\pp$ the **orthogonal projection of $\vv$ onto $\ww$**, and write $\pp=\def\ppp{\text{proj}_{\ww}\vv}\ppp$, if 
- 
-  - $\pp$ is in the same direction as $\ww$; and 
-  - the vector $\nn=\vv-\pp$ joining the end of $\pp$ to the end of $\vv$ is orthogonal to $\ww$. 
- 
-{{ :t3.png?nolink&300 |}} 
- 
-We can use these properties of $\pp$ to find a formula for $\pp$ in terms of $\vv$ and $\ww$. 
- 
-  - Since  $\pp$ is in the same direction as $\ww$, we have $\pp=c\ww$ for some scalar $c\in \mathbb{R}$. 
-  - Since $\nn=\vv-\pp$ is orthogonal to $\ww$, we have $\nn\cdot \ww=0$. Hence \begin{align*}&&(\vv-\pp)\cdot \ww&=0\\&\implies& \vv\cdot\ww-\pp\cdot\ww&=0\\&\implies& \pp\cdot\ww&=\vv\cdot\ww\\&\implies& c\ww\cdot \ww&=\vv\cdot\ww\\&\implies& c\|\ww\|^2&=\vv\cdot\ww\\&\implies& c&=\frac{\vv\cdot\ww}{\|\ww\|^2}.\end{align*} 
- 
-So  
-\[ \pp=\ppp=\frac{\vv\cdot\ww}{\|\ww\|^2}\ww.\] 
- 
-We call $\nn=\vv-\ppp$ the component of $\vv$ orthogonal to $\ww$. 
- 
- 
- 
-=== Example === 
- 
-If $\def\vv{\vec v}\def\pp{\vec p}\def\ppp{\text{proj}_{\ww}\vv}\def\ww{\vec w}\def\nn{\vec n}\vv=\def\c#1#2#3{\begin{bmatrix}#1\\#2\\#3\end{bmatrix}}\c12{-1}$ and $\ww=\c2{-1}4$, then  
-\begin{align*}\ppp&=\frac{\vv\cdot\ww}{\|\ww\|^2}\ww\\&=\frac{2-2-4}{2^2+(-1)^2+4^2}\c2{-1}4\\&=-\frac4{21}\c2{-1}4\end{align*} 
-and the component of $\vv$ orthogonal to $\ww$ is 
-\begin{align*}\nn&=\vv-\ppp\\&=\c12{-1}-\left(-\frac4{21}\right)\c2{-1}4\\&=\c12{-1}+\c{8/21}{-4/21}{16/21}\\&=\c{29/21}{38/21}{-5/21}.\end{align*} 
lecture_18.1491313952.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki