User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_17b

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
lecture_17b [2015/04/01 11:27] – created rupertlecture_17b [2015/04/02 10:03] (current) – [Examples] rupert
Line 23: Line 23:
 More generally: a column vector $\vec v$ moves a point $\vec x$ to $\vec x+\vec v$. More generally: a column vector $\vec v$ moves a point $\vec x$ to $\vec x+\vec v$.
  
-==== Example ====+=== Example ===
  
 Which vector moves the point $A=(-1,3)$ to $B=(5,-4)$? Which vector moves the point $A=(-1,3)$ to $B=(5,-4)$?
  
-Answer: we need a vector $\vec v$ with $A+\vec v=B$, so $\vec v=B-A = \m{5\\-4}-\m{-1\\3}=\m{6\\-7}$.+Answer: we need a vector $\vec v$ with $A+\vec v=B$, so $\vec v=B-A = \m{5\\-4}-\m{-1\\3}=\m{6\\-7}$. We write $\vec{AB}=\m{6\\-7}$, since this is the vector which moves $A$ to $B$. 
 + 
 +==== Definition of $\vec{AB}$ ==== 
 + 
 +If $A$ and $B$ are any points in $\mathbb{R}^n$, then the vector $\vec{AB}$ is defined by  
 +\[ \vec{AB}=B-A\] 
 +(where on the right hand side, we interpret the points as column vectors so we can subtract them to get a column vector). 
 + 
 +Thus $\vec{AB}$ is the vector which moves the point $A$ to the point $B$. 
 + 
 +=== Example === 
 + 
 +In $\mathbb{R}^3$, the points $A=(3,-4,5)$ and $B=(11,6,-2)$ have $\vec{AB}=\m{11\\6\\-2}-\m{3\\-4\\5}=\m{8\\10\\-7}$. 
 + 
 +==== The uses of vectors ==== 
 + 
 +Vectors are used in geometry and science to represent quantities with both a **magnitude** (size/length) and a **direction**. For example: 
 + 
 +  * displacements (in geometry) 
 +  * velocities 
 +  * forces 
 + 
 +Recall that a column vector moves points. Its magnitude, or length, is how far it moves points. 
 + 
 +==== Definition: the length of a vector ==== 
 + 
 +If $\vec v=\m{v_1\\v_2\\\vdots\\v_n}$ is a column vector in $\mathbb{R}^n$, then its **magnitude**, or **length**, or **norm**, is the number 
 +\[ \|\vec v\|=\sqrt{v_1^2+v_2^2+\dots+v_n^2}.\] 
 + 
 +==== Examples ==== 
 + 
 +  * $\left\|\m{4\\3}\right\|=\sqrt{4^2+3^2}=\sqrt{16+9}=\sqrt{25}=5$ 
 +  * $\left\|\m{1\\0\\-2\\3}\right\|=\sqrt{1^2+0^2+(-2)^2+3^2}=\sqrt{1+0+4+9}=\sqrt{14}$ 
 + 
 +==== Exercise ==== 
 + 
 +Prove that if $c\in \mathbb{R}$ is a scalar and $\vec v$ is a vector in $\mathbb{R}^n$, then  
 +\[ \|c\vec v\|=|c|\,\|\vec v\|.\] 
 +That is, multiplying a vector by a scalar $c$ scales its length by $|c|$, the absolute value of $c$.
lecture_17b.1427887664.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki