User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_17_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_17_slides [2017/04/03 15:26] rupertlecture_17_slides [2017/04/03 15:34] (current) – [Corollary] rupert
Line 57: Line 57:
   * if $A=(3,-4,5)$    * if $A=(3,-4,5)$ 
   * and $B=(11,6,-2)$    * and $B=(11,6,-2)$ 
-  * then $\vec{AB}=\def\m#1{\mat{#1}}\m{11\\6\\-2}-\m{3\\-4\\5}=\m{8\\10\\-7}$.+  * then $\vec{AB}=\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\def\m#1{\mat{#1}}\m{11\\6\\-2}-\m{3\\-4\\5}=\m{8\\10\\-7}$.
  
 ==== The uses of vectors ==== ==== The uses of vectors ====
Line 86: Line 86:
 That is, multiplying a vector by a scalar $c$ scales its length by $|c|$, the absolute value of $c$. That is, multiplying a vector by a scalar $c$ scales its length by $|c|$, the absolute value of $c$.
  
-  * Hints: $\sqrt{xy}=\sqrt{x}\sqrt{y}$, and $\sqrt{c^2}=|c|$.+  * Hints: $\sqrt{xy}=\sqrt{x}\sqrt{y}$ whenever $x,y\ge0$, and $\sqrt{c^2}=|c|$ for any $c\in \mathbb R$.
  
 ==== Distance between two points ==== ==== Distance between two points ====
Line 181: Line 181:
 ==== Example ==== ==== Example ====
  
-  * Let $\vec v=\m{1\\2}$ and $\vec w=\m{-2\\1}$ +What's the angle between $\vec v=\m{1\\2}$ and $\vec w=\m{-2\\1}$? 
-  * Then $\dp vw=1(-2)+2(1)=-2+2=0$. +  * $\dp vw=1(-2)+2(1)=-2+2=0$. 
-  * On the other hand, $\|\vec v\|=\sqrt5=\|\vec w\|$+  * $\|\vec v\|=\sqrt5=\|\vec w\|$
   * So the angle $\theta$ between $\vec v$ and $\vec w$ has $ 0=\dp vw=\sqrt 5\times \sqrt 5 \times \cos\theta$   * So the angle $\theta$ between $\vec v$ and $\vec w$ has $ 0=\dp vw=\sqrt 5\times \sqrt 5 \times \cos\theta$
   * So $5\cos\theta=0$, so $\cos\theta=0$,   * So $5\cos\theta=0$, so $\cos\theta=0$,
Line 225: Line 225:
   * So $\vv\cdot\ww=\|\vv\|\,\|\ww\|\cos\theta$. ■    * So $\vv\cdot\ww=\|\vv\|\,\|\ww\|\cos\theta$. ■ 
  
-==== Corollary ====+==== Corollary ====
  
 If $\vv$ and $\ww$ are non-zero vectors and $\theta$ is the angle between them, then $\cos\theta=\displaystyle\frac{\vv\cdot\ww}{\|\vv\|\,\|\ww\|}$. If $\vv$ and $\ww$ are non-zero vectors and $\theta$ is the angle between them, then $\cos\theta=\displaystyle\frac{\vv\cdot\ww}{\|\vv\|\,\|\ww\|}$.
  
-==== Corollary ====+==== Corollary ====
 If $\vv$ and $\ww$ are non-zero vectors with $\vv\cdot\ww=0$, then $\vv$ and $\ww$ are **orthogonal**: they are at right-angles. If $\vv$ and $\ww$ are non-zero vectors with $\vv\cdot\ww=0$, then $\vv$ and $\ww$ are **orthogonal**: they are at right-angles.
  
lecture_17_slides.1491233189.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki