User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_17

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_17 [2015/04/01 11:08] rupertlecture_17 [2017/03/30 09:21] (current) rupert
Line 1: Line 1:
-{{page>lecture 17a}}+====== Chapter 3: Vectors and geometry ====== 
 + 
 +Recall that a $2\times 1$ column vector such as $\def\m#1{\begin{bmatrix}#1\end{bmatrix}}\m{4\\3}$ is a pair of numbers written in a column. We are also used to writing points in the plane $\mathbb R^2$ as a pair of numbersl; for example $(4,3)$ is the point obtained by starting from the origin, and moving $4$ units to the right and $3$ units up. 
 + 
 +We think of a (column) vector like $\vec v=\m{4\\3}$ as an instruction to move $4$ units to the right and $3$ units up. This movement is called "translation by $\vec v$".  
 + 
 +=== Examples === 
 + 
 +The vector $\vec v=\m{4\\3}$ moves: 
 + 
 +  * $(0,0)$ to $(4,3)$ 
 +  * $(-2,6)$ to $(2,9)$ 
 +  * $(x,y)$ to $(x+4,y+3)$. 
 + 
 +It is convenient to not be too fussy about the difference between a point like $(4,3)$ and the vector $\m{4\\3}$. If we agree to write points as column vectors, then we can perform algebra (addition, subtraction, scalar multiplication) as discussed in Chapter 2, using points and column vectors. 
 + 
 +For example, we could rewrite the examples above by saying that $\vec v=\m{4\\3}$ moves: 
 + 
 +  * $\m{0\\0}$ to $\m{0\\0}+\m{4\\3}=\m{4\\3}$ 
 +  * $\m{-2\\6}$ to $\m{-2\\6}+\m{4\\3}=\m{2\\9}$ 
 +  * $\m{x\\y}$ to $\m{x\\y}+\m{4\\3}=\m{x+4\\y+3}$. 
 + 
 +More generally: a column vector $\vec v$ moves a point $\vec x$ to $\vec x+\vec v$. 
 + 
 +=== Example === 
 + 
 +Which vector moves the point $A=(-1,3)$ to $B=(5,-4)$? 
 + 
 +Answer: we need a vector $\vec v$ with $A+\vec v=B$, so $\vec v=B-A = \def\m#1{\begin{bmatrix}#1\end{bmatrix}}\m{5\\-4}-\m{-1\\3}=\m{6\\-7}$. We write $\vec{AB}=\m{6\\-7}$, since this is the vector which moves $A$ to $B$. 
 + 
 +==== Definition of $\vec{AB}$ ==== 
 + 
 +If $A$ and $B$ are any points in $\mathbb{R}^n$, then the vector $\vec{AB}$ is defined by  
 +\[ \vec{AB}=B-A\] 
 +(where on the right hand side, we interpret the points as column vectors so we can subtract them to get a column vector). 
 + 
 +Thus $\vec{AB}$ is the vector which moves the point $A$ to the point $B$. 
 + 
 +=== Example === 
 + 
 +In $\mathbb{R}^3$, the points $A=(3,-4,5)$ and $B=(11,6,-2)$ have $\vec{AB}=\m{11\\6\\-2}-\m{3\\-4\\5}=\m{8\\10\\-7}$. 
 + 
 +==== The uses of vectors ==== 
 + 
 +Vectors are used in geometry and science to represent quantities with both a **magnitude** (size/length) and a **direction**. For example: 
 + 
 +  * displacements (in geometry) 
 +  * velocities 
 +  * forces 
 + 
 +Recall that a column vector moves points. Its magnitude, or length, is how far it moves points. 
 + 
 +==== Definition: the length of a vector ==== 
 + 
 +If $\vec v=\m{v_1\\v_2\\\vdots\\v_n}$ is a column vector in $\mathbb{R}^n$, then its **magnitude**, or **length**, or **norm**, is the number 
 +\[ \|\vec v\|=\sqrt{v_1^2+v_2^2+\dots+v_n^2}.\] 
 + 
 +==== Examples ==== 
 + 
 +  * $\left\|\m{4\\3}\right\|=\sqrt{4^2+3^2}=\sqrt{16+9}=\sqrt{25}=5$ 
 +  * $\left\|\m{1\\0\\-2\\3}\right\|=\sqrt{1^2+0^2+(-2)^2+3^2}=\sqrt{1+0+4+9}=\sqrt{14}$ 
 + 
 +==== Exercise ==== 
 + 
 +Prove that if $c\in \mathbb{R}$ is a scalar and $\vec v$ is a vector in $\mathbb{R}^n$, then  
 +\[ \|c\vec v\|=|c|\,\|\vec v\|.\] 
 +That is, multiplying a vector by a scalar $c$ scales its length by $|c|$, the absolute value of $c$. 
 + 
 +==== Remark ==== 
 + 
 +$\|\vec{AB}\|$ is the distance from point $A$ to point $B$, since this is the length of vector which takes point $A$ to point $B$. 
 + 
 +=== Examples === 
 + 
 +  * The distance from $A=(1,2)$ to $B=(-3,4)$ is $\|\def\m#1{\begin{bmatrix}#1\end{bmatrix}}\vec{AB}\|=\left\|\m{-3\\4}-\m{1\\2}\right\|=\left\|\m{-4\\2}\right\|=\sqrt{(-4)^2+2^2}=\sqrt{20}=2\sqrt{5}$. 
 +  * The length of the main diagonal of the unit cube in $\mathbb{R}^3$ is the distance between $0=(0,0,0)$ and $A=(1,1,1)$, which is $\|\vec{0A}\|=\left\|\m{1\\1\\1}\right\|=\sqrt{1^2+1^2+1^2}=\sqrt3$. 
 + 
 +==== Scalar multiplication and direction ==== 
 + 
 +Multiplying a vector by a scalar changes its length, but doesn't change its direction. 
 + 
 +==== Definition: unit vectors ==== 
 + 
 +{{page>unit vector}} 
 + 
 +==== Proposition: finding a unit vector in the same direction as a given vector ==== 
 + 
 +If $\vec v$ is a non-zero vector, then $\vec w=\frac1{\|\vec v\|}\vec v$ is a unit vector (in the same direction as $\vec v$). 
 + 
 +=== Proof === 
 + 
 +Using the formula $\|c\vec v\|=|c|\,\|\vec v\|$ and the fact that $\|\vec v\|>0$, we have 
 +\[ \|\vec w\|=\left\|\frac1{\|\vec v\|}\vec v\right\|=\left|\frac1{\|\vec v\|}\right|\,\|\vec v\|=\frac1{\|\vec v\|}\,\|\vec v\| = 1.\] 
 +So $\vec w$ is a unit vector, and since it's scalar multiple of $\vec v$, it's in the same direction as $\vec v$. ■  
 + 
 +==== Example ==== 
 + 
 +What is unit vector in the same direction as $\vec v=\m{1\\2}$?  
 + 
 +We have $\|\vec v\|=\sqrt{1^2+2^2}=\sqrt5$, so the proposition tells us that is $\vec w=\frac1{\|\vec v\|}\vec v = \frac1{\sqrt 5}\vec v=\frac1{\sqrt5}\m{1\\2}=\m{1/\sqrt{5}\\2/\sqrt5}$ is a unit vector in the same direction as $\vec v$. 
 + 
 +===== Addition of vectors ===== 
 + 
 +If $\vec v=\vec{AB}$, then $\vec v$ moves $A$ to $B$, so $A+\vec v=B$. 
 + 
 +If $\vec w=\vec {BC}$, then $\vec w$ moves $B$ to $C$, so $B+\vec w=C$. 
 + 
 +What about $\vec v+\vec w$? We have $A+\vec v+\vec w=B+\vec w=C$. So $\vec v+\vec w=\vec{AC}$. 
 + 
 +This gives us the **triangle law for vector addition**: $\vec v$, $\vec w$ and $\vec v+\vec w$ may be arranged to form a triangle: 
 + 
 +{{ :tri.png?nolink&300 |}} 
 + 
 +We get another triangle by starting at $A$ and translating first by $\vec w$ and then by $\vec v$; the other side of this triangle is $\vec w+\vec v$. 
 +But we know that $\vec v+\vec w=\vec w+\vec v$! So we can put these two triangles together to get the **parallelogram law for vector addition**:  
 + 
 +{{ :par.png?nolink&300 |}} 
lecture_17.1427886512.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki