User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_16

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_16 [2017/03/29 15:44] – [Example ($n=4$)] rupertlecture_16 [2017/03/30 09:20] (current) – [Chapter 3: Vectors and geometry] rupert
Line 43: Line 43:
 We have \[C=\mat{+\vm{2&0&0\\2&3&0\\2&3&4}&-\vm{1&0&0\\1&3&0\\1&3&4}&+0&-0\\-0&+\vm{1&0&0\\1&3&0\\1&3&4}&-\vm{1&0&0\\1&2&0\\1&2&4}&+0\\+0&-0&+\vm{1&0&0\\1&2&0\\1&2&4}&-\vm{1&0&0\\1&2&0\\1&2&3}\\-0&+0&-0&+\vm{1&0&0\\1&2&0\\1&2&3}}=\mat{24&-12&0&0\\0&12&-8&0\\0&0&8&-6\\0&0&0&6}\] We have \[C=\mat{+\vm{2&0&0\\2&3&0\\2&3&4}&-\vm{1&0&0\\1&3&0\\1&3&4}&+0&-0\\-0&+\vm{1&0&0\\1&3&0\\1&3&4}&-\vm{1&0&0\\1&2&0\\1&2&4}&+0\\+0&-0&+\vm{1&0&0\\1&2&0\\1&2&4}&-\vm{1&0&0\\1&2&0\\1&2&3}\\-0&+0&-0&+\vm{1&0&0\\1&2&0\\1&2&3}}=\mat{24&-12&0&0\\0&12&-8&0\\0&0&8&-6\\0&0&0&6}\]
 so \[J=C^T=\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}.\] so \[J=C^T=\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}.\]
-Note that $\det A$ is easily found from $C$ by summing the entries of $A$ multiplied by the entries of $C$ (i.e., the minors) along any row or column. Using the first row, we obtain $\det A=1\times 24+0+0+0=24$.+Since $A$ is lower triangular, its determinant is given by multiplying together its diagonal entries: $\det(A)=1\times 2\times 3\times 4=24$. (Note that even if $A$ was not triangular, $\det A$ can be easily found from the matrix of cofactors $C$ by summing the entries of $A$ multiplied by the entries of $C$ (i.e., the minors) along any row or column.
 So \[A^{-1}=\frac1{\det A}J = \frac1{24}\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}=\mat{1&0&0&0\\-1/2&1/2&0&0\\0&-1/3&1/3&0\\0&0&-1/4&1/4}.\] So \[A^{-1}=\frac1{\det A}J = \frac1{24}\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}=\mat{1&0&0&0\\-1/2&1/2&0&0\\0&-1/3&1/3&0\\0&0&-1/4&1/4}.\]
-(You should check that this really is the inverse, by checking that $AA^{-1}=I_4=A^{-1}A$.)+You should check that this really is the inverse, by checking that $AA^{-1}=I_4=A^{-1}A$.
 ===== A more efficient way to find $A^{-1}$ ===== ===== A more efficient way to find $A^{-1}$ =====
  
Line 88: Line 89:
  
  
-====== Chapter 3: Vectors and geometry ====== 
- 
-Recall that a $2\times 1$ column vector such as $\def\m#1{\begin{bmatrix}#1\end{bmatrix}}\m{4\\3}$ is a pair of numbers written in a column. We are also used to writing points in the plane $\mathbb R^2$ as a pair of numbersl; for example $(4,3)$ is the point obtained by starting from the origin, and moving $4$ units to the right and $3$ units up. 
- 
-We think of a (column) vector like $\vec v=\m{4\\3}$ as an instruction to move $4$ units to the right and $3$ units up. This movement is called "translation by $\vec v$" 
- 
-=== Examples === 
- 
-The vector $\vec v=\m{4\\3}$ moves: 
- 
-  * $(0,0)$ to $(4,3)$ 
-  * $(-2,6)$ to $(2,9)$ 
-  * $(x,y)$ to $(x+4,y+3)$. 
- 
-It is convenient to not be too fussy about the difference between a point like $(4,3)$ and the vector $\m{4\\3}$. If we agree to write points as column vectors, then we can perform algebra (addition, subtraction, scalar multiplication) as discussed in Chapter 2, using points and column vectors. 
- 
-For example, we could rewrite the examples above by saying that $\vec v=\m{4\\3}$ moves: 
- 
-  * $\m{0\\0}$ to $\m{0\\0}+\m{4\\3}=\m{4\\3}$ 
-  * $\m{-2\\6}$ to $\m{-2\\6}+\m{4\\3}=\m{2\\9}$ 
-  * $\m{x\\y}$ to $\m{x\\y}+\m{4\\3}=\m{x+4\\y+3}$. 
- 
-More generally: a column vector $\vec v$ moves a point $\vec x$ to $\vec x+\vec v$. 
  
  
lecture_16.1490802240.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki