User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_16

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_16 [2015/03/26 10:42] rupertlecture_16 [2017/03/30 09:20] (current) – [Chapter 3: Vectors and geometry] rupert
Line 1: Line 1:
-==== Corollary ===+=== Example: $n=2$, general case ===
  
-If $\def\row{\text{row}}\row_j(A)=c\cdot \row_i(A)$ for some $i\ne jand some $c\in \mathbb{R}$, then $\det(A)=0$.+If $A=\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\mat{a&b\\c&d}$, then $C=\mat{d&-c\\-b&a}$, so the adjoint of $A$ is $J=C^T=\mat{d&-b\\-c&a}$. 
  
-=== Proof ===+Recall that $AJ=(\det A)I_2=JA$; we calculated this earlier when we looked at the inverse of a $2\times 2$ matrix. Hence for a $2\times 2$ matrix $A$, if $\det A\ne0$, then $A^{-1}=\frac1{\det A}J$.
  
-Let $Bhave the same rows as $A$, except with $\row_i(A)$ in both row $i$ and row $j$. Observe that +=== Example: $n=3===
  
-  * row $j$ of $B$ is $c$ times row $j$ of $A$, and all the other rows are equal; and +If $\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, then the matrix of signs is $\mat{+&-&+\\-&+&-\\+&-&+}$, so 
-  * $A$ has two equal rows. +\[\def\vm#1{\begin{vmatrix}#1\end{vmatrix}} C=\mat{ 
-Hence using property in the theorem and the previous corollary, we have $\det(B)=c\cdot \det(A)=c\cdot 0=0.$ ■+\vm{-4&3\\4&-2}&-\vm{-2&3\\5&-2}&\vm{-2&-4\\5&4}\\ 
 +-\vm{1&0\\4&-2}&\vm{3&0\\5&-2}&-\vm{3&1\\5&4}\\ 
 +\vm{1&0\\-4&3}&-\vm{3&0\\-2&3}&\vm{3&1\\-2&-4}} 
 += \mat{-4&11&12\\2&-6&-7\\3&-9&-10}\] 
 +so the adjoint of $A$ is 
 +\[ J=C^T=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}.\]
  
-==== Corollary ====+Observe that $AJ=\mat{3&1&0\\-2&-4&3\\5&4&-2}\mat{-4&2&3\\11&-6&-9\\12&-7&-10}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$, and $JA=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}\mat{3&1&0\\-2&-4&3\\5&4&-2}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$; and $\det(A)=-1$.
  
-If $E$ has the same rows as $A$ except in row $j$and $\row_j(E)=\row_j(A)+c\cdot \row_i(A)$ for some $i\ne j$ and some $c\in \mathbb{R}$, then $\det(E)=\det(A)$.+This is an illustration of the following theoremwhose proof is omitted:
  
-=== Proof ===+==== Theorem: key property of the adjoint of a square matrix ====
  
-Let $Bhave the same rows as $A$, except with $c\cdot \row_i(A)$ in row $j$. Observe that+If $Ais any $n\times nmatrix and $J$ is its [[adjoint]]then $AJ=(\det A)I_n=JA$.
  
-  * $\det(B)=0$, by the previous corollary; and +==== Corollary: a formula for the inverse of a square matrix ====
-  * except in row $j$, the rows of $E$, $A$ and $B$ are all equal, and $\row_j(E)=\row_j(A)+\row_j(B)$.+
  
-Hence by property 4 of the theorem, we have $\det(E)=\det(A)+\det(B)=\det(A)+0=\det(A)$. +If $A$ is any $n\times n$ matrix with $\det(A)\ne 0$, then $A$ is invertible and \[A^{-1}=\frac1{\det A}J\] where $J$ is the adjoint of $A$.
  
-We have now seen the effect of each of the three types of [[ERO]] on the determinant of a matrix:+=== Proof ===
  
-  - changing the order of the rows of the matrix multiplies the determinant by $-1$; +Divide the equation $AJ=(\det A)I_n=JA$ by $\det A$.  ■ 
-  - multiplying one of the rows of the matrix by $c\in \mathbb{R}multiplies the determinant by $c$; and +
-  - replacing row $j$ by "row $j$ ${}+{}$ $c\times {}(row $i$)", where $c$ is a non-zero real number and $i\ne j$ does not change the determinant.+
  
-Moreover, since $\det(A)=\det(A^T)$, this all applies equally to columns instead of rows.+==== Example ====
  
-We can use EROs to put a matrix into upper triangular formand then finding the determinant is easy: just multiply the diagonal entries together. We just have to keep track of how the determinant is changed by the EROs of types 1 and 2.+If again we take $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, then $J=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$ and $\det(A)=-1$, so $A$ is invertible and $A^{-1}=\frac1{-1}J=-J=\mat{4&-2&-3\\-11&6&9\\-12&7&10}$.
  
-==== Example: using EROs to find the determinant ====+==== Example ($n=4$) ====
  
-\begin{align*}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}} \vm{1&3&1&3\\\color{red}4&\color{red}8&\color{red}0&\color{red}{12}\\0&1&3&6\\2&2&1&6}&= \color{red}{4}\vm{1&3&1&\color{blue}3\\1&2&0&\color{blue}3\\0&1&3&\color{blue}6\\2&2&1&\color{blue}6}\\&=4\cdot \color{blue}3\vm{\color{green}1&3&1&1\\\color{red}1&2&0&1\\\color{red}0&1&3&2\\\color{red}2&2&1&2+Let $A=\mat{1&0&0&0\\1&2&0&0\\1&2&3&0\\1&2&3&4}$.
-\\&=12\vm{1&3&1&1\\\color{blue}0&\color{blue}{-1}&\color{blue}{-1}&\color{blue}{0}\\\color{blue}0&\color{blue}1&\color{blue}3&\color{blue}2\\0&-4&-1&-0} +
-\\&=\color{blue}{-}12\vm{1&3&1&1\\0&\color{green}1&3&2\\0&\color{red}{-1}&{-1}&{0}\\0&\color{red}{-4}&-1&0} +
-\\&=-12\vm{1&3&1&1\\0&1&3&2\\0&0&\color{green}2&2\\0&0&\color{red}{11}&8} +
-\\&=-12\vm{1&3&1&1\\0&1&3&2\\0&0&2&2\\0&0&0&-3} +
-\\&=-12(1)(1)(2)(-3)=72. +
-\end{align*}+
  
-===== Finding the inverse of an invertible $n\times n$ matrix =====+Recall that a matrix with a repeated row or a zero row has determinant zero. 
 +We have \[C=\mat{+\vm{2&0&0\\2&3&0\\2&3&4}&-\vm{1&0&0\\1&3&0\\1&3&4}&+0&-0\\-0&+\vm{1&0&0\\1&3&0\\1&3&4}&-\vm{1&0&0\\1&2&0\\1&2&4}&+0\\+0&-0&+\vm{1&0&0\\1&2&0\\1&2&4}&-\vm{1&0&0\\1&2&0\\1&2&3}\\-0&+0&-0&+\vm{1&0&0\\1&2&0\\1&2&3}}=\mat{24&-12&0&0\\0&12&-8&0\\0&0&8&-6\\0&0&0&6}\] 
 +so \[J=C^T=\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}.\] 
 +Since $A$ is lower triangular, its determinant is given by multiplying together its diagonal entries: $\det(A)=1\times 2\times 3\times 4=24$. (Note that even if $A$ was not triangular, $\det A$ can be easily found from the matrix of cofactors $C$ by summing the entries of $A$ multiplied by the entries of $C$ (i.e., the minors) along any row or column.)
  
-==== Definition: the adjoint of a square matrix ====+So \[A^{-1}=\frac1{\det A}J \frac1{24}\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}=\mat{1&0&0&0\\-1/2&1/2&0&0\\0&-1/3&1/3&0\\0&0&-1/4&1/4}.\] 
 +You should check that this really is the inverse, by checking that $AA^{-1}=I_4=A^{-1}A$. 
 +===== A more efficient way to find $A^{-1}$ =====
  
-{{page>adjoint}}+Given an $n\times n$ matrix $A$, form the $n\times 2n$ matrix 
 +\[ \def\m#1{\left[ 
 +\begin{array}{@{} c|c {}@} % it does autodetection 
 +#1 
 +\end{array} 
 +\right]}\m{A&I_n}\] 
 +and use [[EROs]] to put this matrix into [[RREF]]. One of two things can happen:
  
-=== Example: $n=2$ ===+  * Either you get a row of the form $[0~0~\dots~0~|~*~*~\dots~*]$ which starts with $n$ zeros. You can then conclude that $A$ is not invertible. 
 +  * Or you end up with a matrix of the form $\m{I_n&B}$ for some $n\times n$ matrix $B$. You can then conclude that $A$ is invertible, and $A^{-1}=B$. 
 + 
 +==== Examples ==== 
 + 
 +  * Consider $A=\def\mat#1{\begin{matrix}#1\end{matrix}}\left[\mat{1&3\\2&6}\right]$. \begin{align*}\m{A&I_2}&=\m{\mat{1&3\\2&6}&\mat{1&0\\0&1}} 
 +\def\go#1#2{\m{\mat{#1}&\mat{#2}}} 
 +\def\ar#1{\\[6pt]\xrightarrow{#1}&
 +\ar{R2\to R2-2R1}\go{1&3\\0&0}{1&0\\-2&1} 
 +\end{align*} Conclusion: $A$ is not invertible. 
 +  * Consider $A=\left[\mat{1&3\\2&7}\right]$.\begin{align*}\m{A&I_2}&=\m{\mat{1&3\\2&7}&\mat{1&0\\0&1}} 
 +\ar{R2\to R2-2R1}\go{1&3\\0&1}{1&0\\-2&1} 
 +\ar{R1\to R1-3R1}\go{1&0\\0&1}{7&-3\\-2&1} 
 +\end{align*} Conclusion: $A$ is invertible and $A^{-1}=\left[\mat{7&-3\\-2&1}\right]$. 
 +  * Consider $A=\left[\mat{3&1&0\\-2&-4&3\\5&4&-2}\right]$.\begin{align*}\m{A&I_3}&=\go{3&1&0\\-2&-4&3\\5&4&-2}{1&0&0\\0&1&0\\0&0&1} 
 +\ar{R1\to R1+R2} 
 +\go{1&-3&3\\-2&-4&3\\5&4&-2}{1&1&0\\0&1&0\\0&0&1} 
 +\ar{R2\to R2+2R1,\ R3\to R3-5R1} 
 +\go{1&-3&3\\0&-10&9\\0&19&-17}{1&1&0\\2&3&0\\-5&-5&1} 
 +\ar{R3\leftrightarrow R2} 
 +\go{1&-3&3\\0&19&-17\\0&-10&9}{1&1&0\\-5&-5&1\\2&3&0} 
 +\ar{R2\to R2+2R3} 
 +\go{1&-3&3\\0&-1&1\\0&-10&9}{1&1&0\\-1&1&1\\2&3&0} 
 +\ar{R1\to R1+3R2,\ R3\to R3-10R2} 
 +\go{1&0&0\\0&-1&1\\0&0&-1}{4&-2&3\\-1&1&1\\12&-7&-10} 
 +\ar{R2\to R2+R3} 
 +\go{1&0&0\\0&-1&0\\0&0&-1}{4&-2&3\\11&-6&-9\\12&-7&-10} 
 +\ar{R2\to -R2,\ R3\to -R3} 
 +\go{1&0&0\\0&1&0\\0&0&1}{4&-2&3\\-11&6&9\\-12&7&10} 
 +\end{align*} Conclusion: $A$ is invertible, and $A^{-1}=\left[\mat{4&-2&3\\-11&6&9\\-12&7&10}\right]$.
  
-If $A=\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\mat{a&b\\c&d}$, then $C=\mat{d&-c\\-b&a}$, so the adjoint of $A$ is $J=C^T=\mat{d&-b\\-c&a}$.  
  
-Recall that $AJ=(\det A)I_2=JA$; we calculated this earlier when we looked at the inverse of a $2\times 2$ matrix. Hence if $\det A\ne0$, then $A^{-1}=\frac1{\det A}J$. 
  
-=== Example: $n=3$ === 
  
-If $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, then the matrix of signs is $\mat{+&-&+\\-&+&-\\+&-&+}$, so 
-\[ C=\mat{ 
-\vm{-4&3\\4&-2}&-\vm{-2&3\\5&-2}&\vm{-2&-4\\5&4}\\ 
--\vm{1&0\\4&-2}&\vm{3&0\\5&-2}&-\vm{3&1\\5&4}\\ 
-\vm{1&0\\-4&3}&-\vm{3&0\\-2&3}&\vm{3&1\\-2&-4}} 
-= \mat{-4&11&12\\2&-6&-7\\3&-9&-10}\] 
lecture_16.1427366535.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki