Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision |
| lecture_15_slides [2017/03/27 17:28] – rupert | lecture_15_slides [2017/03/27 17:31] (current) – [Example: $n=3$] rupert |
|---|
| ==== Example: $n=3$ ==== | ==== Example: $n=3$ ==== |
| |
| Let $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$. | Find $J$, the adjoint of $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, and compute $A^{-1}$. |
| * Matrix of signs: $\mat{+&-&+\\-&+&-\\+&-&+}$ | * Matrix of signs: $\mat{+&-&+\\-&+&-\\+&-&+}$ |
| * Matrix of cofactors: $C=\def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|}\mat{\vm{-4&3\\4&-2}&-\vm{-2&3\\5&-2}&\vm{-2&-4\\5&4}\\-\vm{1&0\\4&-2}&\vm{3&0\\5&-2}&-\vm{3&1\\5&4}\\\vm{1&0\\-4&3}&-\vm{3&0\\-2&3}&\vm{3&1\\-2&-4}}= \mat{-4&11&12\\2&-6&-7\\3&-9&-10}$ | * Matrix of cofactors: $C=\def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|}\mat{\vm{-4&3\\4&-2}&-\vm{-2&3\\5&-2}&\vm{-2&-4\\5&4}\\-\vm{1&0\\4&-2}&\vm{3&0\\5&-2}&-\vm{3&1\\5&4}\\\vm{1&0\\-4&3}&-\vm{3&0\\-2&3}&\vm{3&1\\-2&-4}}= \mat{-4&11&12\\2&-6&-7\\3&-9&-10}$ |
| * So the adjoint of $A$ is $J=C^T=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$. | |
| |
| ==== ==== | ==== ==== |
| * Adjoint of $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$ is $J=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$ | * Adjoint of $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$ is $J=C^T=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$ |
| * $AJ=\mat{3&1&0\\-2&-4&3\\5&4&-2}\mat{-4&2&3\\11&-6&-9\\12&-7&-10}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$ | * $AJ=\mat{3&1&0\\-2&-4&3\\5&4&-2}\mat{-4&2&3\\11&-6&-9\\12&-7&-10}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$ |
| * $JA=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}\mat{3&1&0\\-2&-4&3\\5&4&-2}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$ | * $JA=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}\mat{3&1&0\\-2&-4&3\\5&4&-2}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$ |