User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_15_slides

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_15_slides [2017/03/27 17:23] – [Examples] rupertlecture_15_slides [2017/03/27 17:31] (current) – [Example: $n=3$] rupert
Line 51: Line 51:
  
   * $\det(A_{Ri\leftrightarrow Rj})=-\det(A)$, so $\def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|}\vm{0&0&2\\0&3&15\\4&23&2} = -\vm{4&23&2\\0&3&15\\0&0&2}=-4\cdot 3\cdot 2 = -24$.   * $\det(A_{Ri\leftrightarrow Rj})=-\det(A)$, so $\def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|}\vm{0&0&2\\0&3&15\\4&23&2} = -\vm{4&23&2\\0&3&15\\0&0&2}=-4\cdot 3\cdot 2 = -24$.
-  * $\det(A_{Ri\to c Ri})=c\det(A)$, and the same for columns. So \begin{align*}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\vm{ \color{red}2&\color{red}4&\color{red}6&\color{red}{10}\\\color{blue}5&\color{blue}0&\color{blue}0&-\color{blue}{10}\\\color{orange}9&\color{orange}0&\color{orange}{81}&\color{orange}{99}\\1&2&3&4} &= \color{red}2\cdot \color{blue}5\cdot \color{orange}9 \vm{ 1&\color{green}2&\color{pink}3&5\\1&\color{green}0&\color{pink}0&-2\\1&\color{green}0&\color{pink}9&11\\1&\color{green}2&\color{pink}3&4}=2\cdot 5\cdot 9\cdot 2\cdot 5\cdot 9\cdot \color{green}2\cdot\color{pink} 3 \vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4}.\end{align*}+  * $\det(A_{Ri\to c Ri})=c\det(A)$, and the same for columns. So \begin{align*}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\vm{ \color{red}2&\color{red}4&\color{red}6&\color{red}{10}\\\color{blue}5&\color{blue}0&\color{blue}0&-\color{blue}{10}\\\color{orange}9&\color{orange}0&\color{orange}{81}&\color{orange}{99}\\1&2&3&4} &= \color{red}2\cdot \color{blue}5\cdot \color{orange}9 \vm{ 1&\color{green}2&\color{pink}3&5\\1&\color{green}0&\color{pink}0&-2\\1&\color{green}0&\color{pink}9&11\\1&\color{green}2&\color{pink}3&4}\\&=2\cdot 5\cdot 9\cdot \color{green}2\cdot\color{pink} 3 \vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4}.\end{align*}
  
 ==== ==== ==== ====
Line 110: Line 110:
 ==== Example: $n=3$ ==== ==== Example: $n=3$ ====
  
-Let $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$.+Find $J$, the adjoint of $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, and compute $A^{-1}$.
   * Matrix of signs: $\mat{+&-&+\\-&+&-\\+&-&+}$   * Matrix of signs: $\mat{+&-&+\\-&+&-\\+&-&+}$
-  * Matrix of cofactors: $C=\mat{\vm{-4&3\\4&-2}&-\vm{-2&3\\5&-2}&\vm{-2&-4\\5&4}\\-\vm{1&0\\4&-2}&\vm{3&0\\5&-2}&-\vm{3&1\\5&4}\\\vm{1&0\\-4&3}&-\vm{3&0\\-2&3}&\vm{3&1\\-2&-4}}= \mat{-4&11&12\\2&-6&-7\\3&-9&-10}$ +  * Matrix of cofactors: $C=\def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|}\mat{\vm{-4&3\\4&-2}&-\vm{-2&3\\5&-2}&\vm{-2&-4\\5&4}\\-\vm{1&0\\4&-2}&\vm{3&0\\5&-2}&-\vm{3&1\\5&4}\\\vm{1&0\\-4&3}&-\vm{3&0\\-2&3}&\vm{3&1\\-2&-4}}= \mat{-4&11&12\\2&-6&-7\\3&-9&-10}$
-  * So the adjoint of $A$ is $J=C^T=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$.+
  
 ==== ==== ==== ====
-  * Adjoint of $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$ is $J=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$+  * Adjoint of $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$ is $J=C^T=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$
   * $AJ=\mat{3&1&0\\-2&-4&3\\5&4&-2}\mat{-4&2&3\\11&-6&-9\\12&-7&-10}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$   * $AJ=\mat{3&1&0\\-2&-4&3\\5&4&-2}\mat{-4&2&3\\11&-6&-9\\12&-7&-10}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$
   * $JA=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}\mat{3&1&0\\-2&-4&3\\5&4&-2}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$   * $JA=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}\mat{3&1&0\\-2&-4&3\\5&4&-2}=\mat{-1&0&0\\0&-1&0\\0&0&-1}=-1\cdot I_3$
Line 133: Line 132:
 ==== Corollary: a formula for the inverse of a square matrix ==== ==== Corollary: a formula for the inverse of a square matrix ====
  
-If $A$ is any $n\times n$ matrix with $\det(A)\ne 0$, then $A$ is invertible and \[A^{-1}=\frac1{\det A}J\] where $J$ is the adjoint of $A$.+If $A$ is any $n\times n$ matrix with $\det(A)\ne 0$, then $A$ is invertibleand $A^{-1}=\frac1{\det A}Jwhere $J$ is the adjoint of $A$.
  
 === Proof === === Proof ===
  
-  * Divide the equation $AJ=(\det A)I_n=JA$ by $\det A$.  ■ +  * Divide the equation $AJ=(\det A)I_n=JA$ by $\det A$. 
 +  * $A(\frac1{\det A}J)=I_n=(\frac1{\det A})JA$ 
 +  * So $A^{-1}=\frac1{\det A} J$.  ■  
 + 
 +==== Example ($n=4$) ==== 
 + 
 +Let $A=\mat{1&0&0&0\\1&2&0&0\\1&2&3&0\\1&2&3&4}$. 
 + 
 +  * Reminder: repeated row or zero row gives determinant zero 
 +  * $C=\mat{+\vm{2&0&0\\2&3&0\\2&3&4}&-\vm{1&0&0\\1&3&0\\1&3&4}&+0&-0\\-0&+\vm{1&0&0\\1&3&0\\1&3&4}&-\vm{1&0&0\\1&2&0\\1&2&4}&+0\\+0&-0&+\vm{1&0&0\\1&2&0\\1&2&4}&-\vm{1&0&0\\1&2&0\\1&2&3}\\-0&+0&-0&+\vm{1&0&0\\1&2&0\\1&2&3}}=\mat{24&-12&0&0\\0&12&-8&0\\0&0&8&-6\\0&0&0&6}$ 
 +==== Example ($n=4$) ==== 
 + 
 +Let $A=\mat{1&0&0&0\\1&2&0&0\\1&2&3&0\\1&2&3&4}$. 
 + 
 +  * $C=\mat{24&-12&0&0\\0&12&-8&0\\0&0&8&-6\\0&0&0&6}$ so $J=C^T=\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}$. 
 +  * So $A^{-1}=\frac1{\det A}J = \frac1{24}\mat{24&0&0&0\\-12&12&0&0\\0&-8&8&0\\0&0&-6&6}=\mat{1&0&0&0\\-1/2&1/2&0&0\\0&-1/3&1/3&0\\0&0&-1/4&1/4}$. 
 +  * (Easy to check that $AA^{-1}=I_4=A^{-1}A$.) 
 + 
  
-==== Example ==== 
  
-If again we take $A=\mat{3&1&0\\-2&-4&3\\5&4&-2}$, then $J=\mat{-4&2&3\\11&-6&-9\\12&-7&-10}$ and $\det(A)=-1$, so $A$ is invertible and $A^{-1}=\frac1{-1}J=-J=\mat{4&-2&-3\\-11&6&9\\-12&7&10}$. 
  
lecture_15_slides.1490635384.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki