User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_15

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_15 [2016/03/10 11:36] rupertlecture_15 [2017/03/28 11:16] (current) – [Definition: the adjoint of a square matrix] rupert
Line 1: Line 1:
 +==== Theorem: row/column operations and determinants ====
 +
 +Let $A$ be an $n\times n$ matrix, let $c$ be a scalar and let $i\ne j$. 
 +
 +$A_{Ri\to x}$ means $A$ but with row $i$ replaced by $x$.
 +
 +  - If $i\ne j$, then $\det(A_{Ri\leftrightarrow Rj})=-\det(A)$ (swapping two rows changes the sign of det).
 +  - $\det(A_{Ri\to c Ri}) = c\det(A)$ (scaling one row scales $\det(A)$ in the same way)
 +  - $\det(A_{Ri\to Ri + c Rj}) = \det(A)$ (adding a multiple of one row to another row doesn't change $\det(A)$)
 +
 +  * Also, these properties all hold if you change "row" into "column" throughout.
  
 ==== Corollary ==== ==== Corollary ====
Line 50: Line 61:
 \\&=-12(1)(1)(2)(-3)=72. \\&=-12(1)(1)(2)(-3)=72.
 \end{align*} \end{align*}
 +
 +===== Finding the inverse of an invertible $n\times n$ matrix =====
 +
 +==== Definition: the adjoint of a square matrix ====
 +
 +{{page>adjoint}}
 +
 +=== Example: $n=2$ ===
 +
 +If $A=\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\mat{1&2\\3&4}$, then $C_{11}=+4$, $C_{12}=-3$, $C_{21}=-2$, $C_{22}=+1$. So the matrix of cofactors is $C=\mat{4&-3\\-2&1}$, so the adjoint of $A$ is $J=C^T=\mat{4&-2\\-3&1}$. 
  
  
lecture_15.1457609813.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki