User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_15

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_15 [2015/03/24 10:34] – [Theorem: Laplace expansion along any row or column gives the determinant] rupertlecture_15 [2017/03/28 11:16] (current) – [Definition: the adjoint of a square matrix] rupert
Line 1: Line 1:
-==== Step 4the determinant of an $n\times n$ matrix ====+==== Theoremrow/column operations and determinants ====
  
 +Let $A$ be an $n\times n$ matrix, let $c$ be a scalar and let $i\ne j$. 
  
-===Definition===+$A_{Ri\to x}$ means $A$ but with row $i$ replaced by $x$.
  
-{{page>determinant of an nxn matrix}}+  - If $i\ne j$, then $\det(A_{Ri\leftrightarrow Rj})=-\det(A)$ (swapping two rows changes the sign of det). 
 +  - $\det(A_{Ri\to c Ri}) = c\det(A)$ (scaling one row scales $\det(A)$ in the same way) 
 +  - $\det(A_{Ri\to Ri + c Rj}) = \det(A)$ (adding a multiple of one row to another row doesn't change $\det(A)$)
  
-===Example===+  * Also, these properties all hold if you change "row" into "column" throughout.
  
-\begin{align*} +==== Corollary ====
-\def\vm#1{\begin{vmatrix}#1\end{vmatrix}} +
-\vm{\color{red}1&\color{red}0&\color{red}2&\color{red}3\\0&2&1&-1\\2&0&0&1\\3&0&4&2} &\color{red}1\vm{\color{blue}2&\color{blue}1&\color{blue}-1\\0&0&1\\0&4&2}-\color{red}0\vm{0&1&-1\\2&0&1\\3&4&2}+\color{red}2\vm{\color{orange}0&\color{orange}2&\color{orange}{-1}\\2&0&1\\3&0&2}-\color{red}3\vm{\color{purple}0&\color{purple}2&\color{purple}1\\2&0&0\\3&0&4}\\ +
-&1\left(\color{blue}2\vm{0&1\\4&2}-\color{blue}1\vm{0&1\\0&2}\color{blue}{-1}\vm{0&0\\0&4}\right)-0+2\left(\color{orange}0-\color{orange}{2}\vm{2&1\\3&2}\color{orange}{-1}\vm{2&0\\3&0}\right)-3\left(\color{purple}0-\color{purple}2\vm{2&0\\3&4}+\color{purple}1\vm{2&0\\3&0}\right)\\ +
-&=1(2(-4)-0-0)+2(-2(1)-0)-3(-2(8)+0)\\ +
-&=-8-4+48\\ +
-&=36. +
-\end{align*}+
  
-==== Theorem: Laplace expansion along any row or column gives the determinant ====+If an $n\times n$ matrix $A$ has two equal rows (or columns), then $\det(A)=0$, and $A$ is not invertible.
  
-  - For any fixed $i$: $\det(A)=a_{i1}C_{i1}+a_{i2}C_{i2}+\dots+a_{in}C_{in}$ (Laplace expansion along row $i$) +=== Proof ===
-  - For any fixed $j$: $\det(A)=a_{1j}C_{1j}+a_{2j}C_{2j}+\dots+a_{nj}C_{nj}$ (Laplace expansion along column $j$)+
  
-=== Example === 
  
-We can make life easier by choosing expansion rows or columns with lots of zerosif possibleLet's redo the previous example with this in mind:+If $A$ has two equal rows, row $i$ and row $j$, then $A=A_{Ri\leftrightarrow Rj}$ 
 +So $\det(A)=\det(A_{Ri\leftrightarrow Rj}) = -\det(A)$, so $2\det(A)=0$, so $\det(A)=0$.
  
-\begin{align*} +If $A$ has two equal columns, then $A^T$ has two equal rows, so $\det(A)=\det(A^T)=0$
-\def\vm#1{\begin{vmatrix}#1\end{vmatrix}} +
-\vm{1&\color{red}0&2&3\\0&\color{red}2&1&-1\\2&\color{red}0&0&1\\3&\color{red}0&4&2} &=  +
--\color{red}0+\color{red}2\vm{1&2&3\\\color{purple}2&\color{purple}0&\color{purple}1\\3&4&2}-\color{red}0+\color{red}0\\ +
-&=2\left(-\color{purple}2\vm{2&3\\4&2}+\color{purple}0-\color{purple}1\vm{1&2\\3&4}\right)\+
-&=2(-2(-8)-(-2))\\ +
-&=36. +
-\end{align*}+
  
-==== Definition: upper triangular matrices ====+In either case, $\det(A)=0$. So $A$ is not invertible.■ 
  
-An $n\times n$ matrix $A$ is **upper triangular** if all the entries below the main diagonal are zero.+=== Examples ===
  
 +  * Swapping two rows changes the sign, so $\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\vm{0&0&2\\0&3&0\\4&0&0} = -\vm{4&0&0\\0&3&0\\0&0&2}=-4\cdot 3\cdot 2 = -24$.
 +  * Multiplying a row or a column by a constant multiplies the determinant by that constant, so \begin{align*}\vm{ 2&4&6&10\\5&0&0&-10\\9&0&81&99\\1&2&3&4} &= 2\vm{ 1&2&3&5\\5&0&0&-10\\9&0&81&99\\1&2&3&4} \\&= 2\cdot 5\vm{ 1&2&3&5\\1&0&0&-2\\9&0&81&99\\1&2&3&4}\\& 2\cdot 5\cdot 9 \vm{ 1&2&3&5\\1&0&0&-2\\1&0&9&11\\1&2&3&4}\\&=2\cdot 5\cdot 9\cdot 2 \vm{ 1&1&3&5\\1&0&0&-2\\1&0&9&11\\1&1&3&4}\\&=2\cdot 5\cdot 9\cdot 2\cdot 3 \vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4}.\end{align*}
 +  * $\det(A_{R1\to R1-R4})=\det(A)$, so \begin{align*}\vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4} &=\vm{ 0&0&0&1\\1&0&0&-2\\1&0&3&11\\1&1&1&4}=-1\vm{1&0&0\\1&0&3\\1&1&1}+0\\&=-\vm{0&3\\1&1} = -(-3)=3.\end{align*}
 +  * Hence \begin{align*}\vm{ 2&4&6&10\\5&0&0&-10\\9&0&81&99\\1&2&3&4} &= 2\cdot 5\cdot 9\cdot 2\cdot 3 \vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4} \\&= 2\cdot 5\cdot 9\cdot 2\cdot 3 \cdot 3 = 1620.\end{align*}
  
-==== Definition: diagonal matrices ====+==== Corollary ===
  
-An $n\times nmatrix $A$ is **diagonal** if the only non-zero entries are on its main diagonal.+If $\def\row{\text{row}}\row_j(A)=c\cdot \row_i(A)for some $i\ne j$ and some $c\in \mathbb{R}$, then $\det(A)=0$.
  
-==== Corollary: the determinant of upper triangular matrices and diagonal matrices ====+=== Proof ===
  
-  - The determinant of an upper triangular $n\times n$ matrix is the product of its diagonal entries: $\det(A)=a_{11}a_{22}\dots a_{nn}$. +Note that $\row_i(A)-c \cdot\row_j(A)=0$. So $A_{Ri\to Ri-c\,Rj}$ has a zero row, and by Laplace expansion along this row we obtain $\det(A_{Ri\to Ri-c\,Rj})=0$.  So $\det(A)=\det(A_{Ri\to Ri-c\,Rj})=0$.
-  - The determinant of an $n\times n$ diagonal matrix is the product of its diagonal entries: $\det(A)=a_{11}a_{22}\dots a_{nn}$.+
  
-=== Proof ===+==== The effect of EROs on the determinant ====
  
-  This is true for $n=1$, triviallyFor $n>1$assume inductively that it is true for $(n-1)\times (n-1)matrices and use the Laplace expansion of an upper triangular $n\times nmatrix $Aalong the first column of $Ato see that $\det(A)=a_{11}C_{11}+0+\dots+0=a_{11}C_{11}$. Since $C_{11}$ is the determinant of the $(n-1)\times (n-1)$ matrix formed by removing the first row and and column of $A$, and this matrix is upper triangular with diagonal entries $a_{22},a_{33},\dots,a_{nn}$, we have $C_{11}=a_{22}a_{33}\dots a_{nn}$, by our inductive assumption. So $\det(A)=a_{11}C_{11}=a_{11}a_{22}a_{33}\dots a_{nn}$ as desired. +We have now seen the effect of each of the three types of [[ERO]] on the determinant of a matrix: 
-  Any diagonal matrix is upper triangular, so this is a special case of statement 1. + 
 +  swapping two rows of the matrix multiplies the determinant by $-1$. By swapping rows repeatedlywe are able to shuffle the rows in an arbitrary fashion, and the determinant will either remain unchanged (if we used an even number of swapsor be multiplied by $-1$ (if we used an odd number of swaps). 
 +  - multiplying one of the rows of the matrix by $c\in \mathbb{R}multiplies the determinant by $c$; and 
 +  - replacing row $j$ by "row $j$ ${}+{}$ $c\times {}$ (row $i$)", where $c$ is a non-zero real number and $i\ne j$ does not change the determinant
 + 
 +Moreover, since $\det(A)=\det(A^T)$, this all applies equally to columns instead of rows. 
 + 
 +We can use EROs to put a matrix into upper triangular form, and then finding the determinant is easy: just multiply the diagonal entries together. We just have to keep track of how the determinant is changed by the EROs of types 1 and 2. 
 + 
 +==== Example: using EROs to find the determinant ==== 
 + 
 +\begin{align*}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}} \vm{1&3&1&3\\\color{red}4&\color{red}8&\color{red}0&\color{red}{12}\\0&1&3&6\\2&2&1&6}&\color{red}{4}\vm{1&3&1&\color{blue}3\\1&2&0&\color{blue}3\\0&1&3&\color{blue}6\\2&2&1&\color{blue}6}\\&=4\cdot \color{blue}3\vm{\color{green}1&3&1&1\\\color{red}1&2&0&1\\\color{red}0&1&3&2\\\color{red}2&2&1&2} 
 +\\&=12\vm{1&3&1&1\\\color{blue}0&\color{blue}{-1}&\color{blue}{-1}&\color{blue}{0}\\\color{blue}0&\color{blue}1&\color{blue}3&\color{blue}2\\0&-4&-1&-0
 +\\&=\color{blue}{-}12\vm{1&3&1&1\\0&\color{green}1&3&2\\0&\color{red}{-1}&{-1}&{0}\\0&\color{red}{-4}&-1&0} 
 +\\&=-12\vm{1&3&1&1\\0&1&3&2\\0&0&\color{green}2&2\\0&0&\color{red}{11}&8} 
 +\\&=-12\vm{1&3&1&1\\0&1&3&2\\0&0&2&2\\0&0&0&-3} 
 +\\&=-12(1)(1)(2)(-3)=72. 
 +\end{align*}
  
-==== Examples ====+===== Finding the inverse of an invertible $n\times n$ matrix =====
  
-  - For any $n$, we have $\det(I_n)=1\cdot 1\cdots 1 1$. +==== Definition: the adjoint of a square matrix ====
-  - For any $n$, we have $\det(5I_n)=5^n$. +
-  - +
  
 +{{page>adjoint}}
  
-=== Theorem ===+=== Example: $n=2$ ===
  
-Let $A$ be an $n\times n$ matrix. +If $A=\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\mat{1&2\\3&4}$, then $C_{11}=+4$, $C_{12}=-3$, $C_{21}=-2$, $C_{22}=+1$. So the matrix of cofactors is $C=\mat{4&-3\\-2&1}$, so the adjoint of $A$ is $J=C^T=\mat{4&-2\\-3&1}$
  
-  - $A$ is invertible if and only if $\det(A)\ne0$. 
-  - If $A'$ is the same as $A$, except with two rows swapped, then $\det(A')=-\det(A)$. 
-  - If $c$ is a scalar and $A'$ is the same as $A$ except with one row multiplied by $c$, then $\det(A')=c\det(A)$. 
-  - If $A'$ and $A''$ are the same as $A$ except in row $i$, and $row_i(A'')=row_i(A)+row_i(A')$, then $\det(A'')=\det(A)+\det(A')$. 
-  - $\det(A^T)=\det(A)$. So we can swap "row" with "column" in these properties. 
-  - If $B$ is another $n\times n$ matrix, then $\det(AB)=\det(A)\det(B)$. 
  
lecture_15.1427193244.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki