User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_14

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_14 [2016/03/10 11:36] rupertlecture_14 [2017/03/09 10:49] (current) – [Corollary on invertibility] rupert
Line 1: Line 1:
 +=== Example ===
 +
 +\begin{align*}\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\det\mat{1&2&3\\7&8&9\\11&12&13} &= 1\cdot C_{11} + 2 C_{12} + 3 C_{13}\\
 +&= 1 \cdot (+M_{11}) + 2 \cdot (-M_{12}) + 3 \cdot(+M_{13})\\
 +&= M_{11}-2M_{12}+3M_{13}\\
 +&= \det\mat{8&9\\12&13} -2\det\mat{7&9\\11&13} + 3\det\mat{7&8\\11&12}\\
 +&= (8\cdot 13-9\cdot 12) -2(7\cdot 13-9\cdot 11)+3(7\cdot 12-8\cdot 11)\\
 +&=-4 -2(-8)+3(-4)\\
 +&=-4+16-12\\
 +&=0.\end{align*}
 +
 +From this, we can conclude that $\mat{1&2&3\\7&8&9\\11&12&13}$ is //not// invertible.
 +
 === Notation === === Notation ===
  
Line 77: Line 90:
   - If $B$ is another $n\times n$ matrix, then $\det(AB)=\det(A)\det(B)$   - If $B$ is another $n\times n$ matrix, then $\det(AB)=\det(A)\det(B)$
  
-==== Theorem: row/column operations and determinants ====+==== Corollary on invertibility ====
  
-Let $A$ be an $n\times nmatrix, let $cbe a scalar and let $i\ne j$+  - $A^Tis invertible if and only if $Ais invertible 
 +  - $AB$ is invertible if and only if **both** $A$ and $Bare invertible
  
-$A_{Ri\to x}$ means $A$ but with row $i$ replaced by $x$. +=== Proof ===
- +
-  - If $i\ne j$, then $\det(A_{Ri\leftrightarrow Rj})=-\det(A)$ (swapping two rows changes the sign of det). +
-  - $\det(A_{Ri\to c Ri}) c\det(A)$ (scaling one row scales $\det(A)$ in the same way) +
-  - $\det(A_{Ri\to Ri + c Rj}) \det(A)$ (adding a multiple of one row to another row doesn't change $\det(A)$) +
- +
-  * Also, these properties all hold if you change "row" into "column" throughout.+
  
 +  - We have $\det(A^T)=\det(A)$. So $A^T$ is invertible $\iff$ $\det(A^T)\ne0$ $\iff$ $\det(A)\ne 0$ $\iff$ $A$ is invertible.
 +  - We have $\det(AB)=\det(A)\det(B)$. So $AB$ is invertible $\iff$ $\det(AB)\ne 0$ $\iff$ $\det(A)\det(B)\ne0$ $\iff$ $\det(A)\ne0$ and $\det(B)\ne 0$ $ \iff$ $A$ is invertible and $B$ is invertible. ■
lecture_14.1457609794.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki