User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_14

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_14 [2016/03/09 14:51] – [Corollary] rupertlecture_14 [2017/03/09 10:49] (current) – [Corollary on invertibility] rupert
Line 1: Line 1:
 +=== Example ===
 +
 +\begin{align*}\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\det\mat{1&2&3\\7&8&9\\11&12&13} &= 1\cdot C_{11} + 2 C_{12} + 3 C_{13}\\
 +&= 1 \cdot (+M_{11}) + 2 \cdot (-M_{12}) + 3 \cdot(+M_{13})\\
 +&= M_{11}-2M_{12}+3M_{13}\\
 +&= \det\mat{8&9\\12&13} -2\det\mat{7&9\\11&13} + 3\det\mat{7&8\\11&12}\\
 +&= (8\cdot 13-9\cdot 12) -2(7\cdot 13-9\cdot 11)+3(7\cdot 12-8\cdot 11)\\
 +&=-4 -2(-8)+3(-4)\\
 +&=-4+16-12\\
 +&=0.\end{align*}
 +
 +From this, we can conclude that $\mat{1&2&3\\7&8&9\\11&12&13}$ is //not// invertible.
 +
 === Notation === === Notation ===
  
Line 77: Line 90:
   - If $B$ is another $n\times n$ matrix, then $\det(AB)=\det(A)\det(B)$   - If $B$ is another $n\times n$ matrix, then $\det(AB)=\det(A)\det(B)$
  
-==== Theorem: row/column operations and determinants ====+==== Corollary on invertibility ====
  
-Let $A$ be an $n\times n$ matrix, let $c$ be a scalar and let $i\ne j$.  +  - $A^Tis invertible if and only if $A$ is invertible 
- +  - $ABis invertible if and only if **both** $A$ and $Bare invertible
-$A_{Ri\to x}$ means $A$ but with row $i$ replaced by $x$. +
- +
-  - If $i\ne j$, then $\det(A_{Ri\leftrightarrow Rj})=-\det(A)$ (swapping two rows changes the sign of det). +
-  - $\det(A_{Ri\to c Ri}) = c\det(A)$ (scaling one row scales $\det(A)$ in the same way) +
-  - $\det(A_{Ri\to Ri + c Rj}) = \det(A)$ (adding a multiple of one row to another row doesn't change $\det(A)$) +
- +
-  Also, these properties all hold if you change "row" into "column" throughout. +
- +
-==== Corollary ==== +
- +
-If an $n\times n$ matrix $A$ has two equal rows (or columns), then $\det(A)=0$, and $Ais not invertible.+
  
 === Proof === === Proof ===
  
- +  We have $\det(A^T)=\det(A)$. So $A^T$ is invertible $\iff$ $\det(A^T)\ne0$ $\iff$ $\det(A)\ne 0$ $\iff$ $A$ is invertible. 
-If $A$ has two equal rows, row $i$ and row $j$, then $A=A_{Ri\leftrightarrow Rj}$ +  - We have $\det(AB)=\det(A)\det(B)$So $AB$ is invertible $\iff$ $\det(AB)\ne 0$ $\iff$ $\det(A)\det(B)\ne0$ $\iff$ $\det(A)\ne0and $\det(B)\ne 0$ $ \iff$ $A$ is invertible and $B$ is invertible
-So $\det(A)=\det(A_{Ri\leftrightarrow Rj}) = -\det(A)$, so $2\det(A)=0$, so $\det(A)=0$. +
- +
-If $A$ has two equal columns, then $A^T$ has two equal rows, so $\det(A)=\det(A^T)=0$.  +
- +
-In either case, $\det(A)=0$. So $A$ is not invertible.■  +
- +
-=== Examples === +
- +
-  * Swapping two rows changes the sign, so $\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\vm{0&0&2\\0&3&0\\4&0&0} = -\vm{4&0&0\\0&3&0\\0&0&2}=-4\cdot 3\cdot 2 = -24$. +
-  * Multiplying a row or a column by a constant multiplies the determinant by that constant, so \begin{align*}\vm{ 2&4&6&10\\5&0&0&-10\\9&0&81&99\\1&2&3&4} &= 2\vm{ 1&2&3&5\\5&0&0&-10\\9&0&81&99\\1&2&3&4} \\&= 2\cdot 5\vm{ 1&2&3&5\\1&0&0&-2\\9&0&81&99\\1&2&3&4}\\& 2\cdot 5\cdot 9 \vm{ 1&2&3&5\\1&0&0&-2\\1&0&9&11\\1&2&3&4}\\&=2\cdot 5\cdot 9\cdot 2 \vm{ 1&1&3&5\\1&0&0&-2\\1&0&9&11\\1&1&3&4}\\&=2\cdot 5\cdot 9\cdot 2\cdot 3 \vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4}.\end{align*} +
-  * $\det(A_{R1\to R1-R4})=\det(A)$, so \begin{align*}\vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4} &=\vm{ 0&0&0&1\\1&0&0&-2\\1&0&3&11\\1&1&1&4}=-1\vm{1&0&0\\1&0&3\\1&1&1}+0\\&=-\vm{0&3\\1&1} = -(-3)=3.\end{align*} +
-  * Hence \begin{align*}\vm{ 2&4&6&10\\5&0&0&-10\\9&0&81&99\\1&2&3&4} &= 2\cdot 5\cdot 9\cdot 2\cdot 3 \vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4} \\&= 2\cdot 5\cdot 9\cdot 2\cdot 3 \cdot 3 = 1620.\end{align*} +
- +
-==== Corollary === +
- +
-If $\def\row{\text{row}}\row_j(A)=c\cdot \row_i(A)$ for some $i\ne jand some $c\in \mathbb{R}$, then $\det(A)=0$. +
- +
-=== Proof === +
- +
-Note that $\row_i(A)-c \cdot\row_j(A)=0$. So $A_{Ri\to Ri-c\,Rj}has a zero row, and by Laplace expansion along this row we obtain $\det(A_{Ri\to Ri-c\,Rj})=0$.  So $\det(A)=\det(A_{Ri\to Ri-c\,Rj})=0$.■ +
- +
-==== The effect of EROs on the determinant ==== +
- +
-We have now seen the effect of each of the three types of [[ERO]] on the determinant of a matrix: +
- +
-  - swapping two rows of the matrix multiplies the determinant by $-1$. By swapping rows repeatedly, we are able to shuffle the rows in an arbitrary fashion, and the determinant will either remain unchanged (if we used an even number of swaps) or be multiplied by $-1$ (if we used an odd number of swaps). +
-  - multiplying one of the rows of the matrix by $c\in \mathbb{R}multiplies the determinant by $c$; and +
-  - replacing row $j$ by "row $j$ ${}+{}$ $c\times {}$ (row $i$)", where $c$ is a non-zero real number and $i\ne jdoes not change the determinant. +
- +
-Moreover, since $\det(A)=\det(A^T)$, this all applies equally to columns instead of rows. +
- +
-We can use EROs to put a matrix into upper triangular form, and then finding the determinant is easy: just multiply the diagonal entries togetherWe just have to keep track of how the determinant is changed by the EROs of types 1 and 2. +
- +
-==== Example: using EROs to find the determinant ==== +
- +
-\begin{align*}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}} \vm{1&3&1&3\\\color{red}4&\color{red}8&\color{red}0&\color{red}{12}\\0&1&3&6\\2&2&1&6}&= \color{red}{4}\vm{1&3&1&\color{blue}3\\1&2&0&\color{blue}3\\0&1&3&\color{blue}6\\2&2&1&\color{blue}6}\\&=4\cdot \color{blue}3\vm{\color{green}1&3&1&1\\\color{red}1&2&0&1\\\color{red}0&1&3&2\\\color{red}2&2&1&2} +
-\\&=12\vm{1&3&1&1\\\color{blue}0&\color{blue}{-1}&\color{blue}{-1}&\color{blue}{0}\\\color{blue}0&\color{blue}1&\color{blue}3&\color{blue}2\\0&-4&-1&-0} +
-\\&=\color{blue}{-}12\vm{1&3&1&1\\0&\color{green}1&3&2\\0&\color{red}{-1}&{-1}&{0}\\0&\color{red}{-4}&-1&0} +
-\\&=-12\vm{1&3&1&1\\0&1&3&2\\0&0&\color{green}2&2\\0&0&\color{red}{11}&8} +
-\\&=-12\vm{1&3&1&1\\0&1&3&2\\0&0&2&2\\0&0&0&-3} +
-\\&=-12(1)(1)(2)(-3)=72. +
-\end{align*} +
- +
lecture_14.1457535100.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki