User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_14

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_14 [2016/03/09 14:48] – [Corollary] rupertlecture_14 [2017/03/09 10:49] (current) – [Corollary on invertibility] rupert
Line 1: Line 1:
 +=== Example ===
 +
 +\begin{align*}\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\det\mat{1&2&3\\7&8&9\\11&12&13} &= 1\cdot C_{11} + 2 C_{12} + 3 C_{13}\\
 +&= 1 \cdot (+M_{11}) + 2 \cdot (-M_{12}) + 3 \cdot(+M_{13})\\
 +&= M_{11}-2M_{12}+3M_{13}\\
 +&= \det\mat{8&9\\12&13} -2\det\mat{7&9\\11&13} + 3\det\mat{7&8\\11&12}\\
 +&= (8\cdot 13-9\cdot 12) -2(7\cdot 13-9\cdot 11)+3(7\cdot 12-8\cdot 11)\\
 +&=-4 -2(-8)+3(-4)\\
 +&=-4+16-12\\
 +&=0.\end{align*}
 +
 +From this, we can conclude that $\mat{1&2&3\\7&8&9\\11&12&13}$ is //not// invertible.
 +
 === Notation === === Notation ===
  
Line 77: Line 90:
   - If $B$ is another $n\times n$ matrix, then $\det(AB)=\det(A)\det(B)$   - If $B$ is another $n\times n$ matrix, then $\det(AB)=\det(A)\det(B)$
  
-==== Theorem: row/column operations and determinants ====+==== Corollary on invertibility ====
  
-Let $A$ be an $n\times n$ matrix, let $c$ be a scalar and let $i\ne j$.  +  - $A^Tis invertible if and only if $A$ is invertible 
- +  - $ABis invertible if and only if **both** $A$ and $Bare invertible
-$A_{Ri\to x}$ means $A$ but with row $i$ replaced by $x$. +
- +
-  - If $i\ne j$, then $\det(A_{Ri\leftrightarrow Rj})=-\det(A)$ (swapping two rows changes the sign of det). +
-  - $\det(A_{Ri\to c Ri}) = c\det(A)$ (scaling one row scales $\det(A)$ in the same way) +
-  - $\det(A_{Ri\to Ri + c Rj}) = \det(A)$ (adding a multiple of one row to another row doesn't change $\det(A)$) +
- +
-  Also, these properties all hold if you change "row" into "column" throughout. +
- +
-==== Corollary ==== +
- +
-If an $n\times n$ matrix $A$ has two equal rows (or columns), then $\det(A)=0$, and $Ais not invertible.+
  
 === Proof === === Proof ===
  
- +  We have $\det(A^T)=\det(A)$. So $A^T$ is invertible $\iff$ $\det(A^T)\ne0$ $\iff$ $\det(A)\ne 0$ $\iff$ $A$ is invertible
-If $A$ has two equal rows, row $i$ and row $j$, then $A=A_{Ri\leftrightarrow Rj}$ +  - We have $\det(AB)=\det(A)\det(B)$. So $ABis invertible $\iff$ $\det(AB)\ne 0$ $\iff$ $\det(A)\det(B)\ne0$ $\iff$ $\det(A)\ne0and $\det(B)\ne 0$ $ \iff$ $A$ is invertible and $B$ is invertible
-So $\det(A)=\det(A_{Ri\leftrightarrow Rj}) = -\det(A)$, so $2\det(A)=0$, so $\det(A)=0$. +
- +
-If $A$ has two equal columns, then $A^T$ has two equal rows, so $\det(A)=\det(A^T)=0$.  +
- +
-In either case, $\det(A)=0$. So $A$ is not invertible.■  +
- +
-=== Examples === +
- +
-  * Swapping two rows changes the sign, so $\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\vm{0&0&2\\0&3&0\\4&0&0} = -\vm{4&0&0\\0&3&0\\0&0&2}=-4\cdot 3\cdot 2 = -24$+
-  * Multiplying a row or a column by a constant multiplies the determinant by that constant, so \begin{align*}\vm{ 2&4&6&10\\5&0&0&-10\\9&0&81&99\\1&2&3&4} &= 2\vm{ 1&2&3&5\\5&0&0&-10\\9&0&81&99\\1&2&3&4} \\&= 2\cdot 5\vm{ 1&2&3&5\\1&0&0&-2\\9&0&81&99\\1&2&3&4}\\& 2\cdot 5\cdot 9 \vm{ 1&2&3&5\\1&0&0&-2\\1&0&9&11\\1&2&3&4}\\&=2\cdot 5\cdot 9\cdot 2 \vm{ 1&1&3&5\\1&0&0&-2\\1&0&9&11\\1&1&3&4}\\&=2\cdot 5\cdot 9\cdot 2\cdot 3 \vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4}.\end{align*} +
-  * $\det(A_{R1\to R1-R4})=\det(A)$, so \begin{align*}\vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4} &=\vm{ 0&0&0&1\\1&0&0&-2\\1&0&3&11\\1&1&1&4}=-1\vm{1&0&0\\1&0&3\\1&1&1}+0\\&=-\vm{0&3\\1&1} = -(-3)=3.\end{align*} +
-  * Hence \begin{align*}\vm{ 2&4&6&10\\5&0&0&-10\\9&0&81&99\\1&2&3&4} &= 2\cdot 5\cdot 9\cdot 2\cdot 3 \vm{ 1&1&1&5\\1&0&0&-2\\1&0&3&11\\1&1&1&4} \\&= 2\cdot 5\cdot 9\cdot 2\cdot 3 \cdot 3 = 1620.\end{align*} +
- +
-==== Corollary === +
- +
-If $\def\row{\text{row}}\row_j(A)=c\cdot \row_i(A)for some $i\ne jand some $c\in \mathbb{R}$, then $\det(A)=0$+
- +
-=== Proof === +
- +
-Let $Bhave the same rows as $A$, except with $\row_i(A)$ in both row $i$ and row $j$Observe that  +
- +
-  * row $j$ of $B$ is $c$ times row $j$ of $A$, and all the other rows are equal; and +
-  * $A$ has two equal rows. +
-Hence using property 3 in the theorem and the previous corollary, we have $\det(B)=c\cdot \det(A)=c\cdot 0=0.$ ■ +
- +
-==== Corollary ==== +
- +
-If $E$ has the same rows as $A$ except in row $j$, and $\row_j(E)=\row_j(A)+c\cdot \row_i(A)$ for some $i\ne jand some $c\in \mathbb{R}$, then $\det(E)=\det(A)$+
- +
-=== Proof === +
- +
-Let $Bhave the same rows as $A$, except with $c\cdot \row_i(A)$ in row $j$. Observe that +
- +
-  * $\det(B)=0$, by the previous corollary; and +
-  * except in row $j$, the rows of $E$, $A$ and $B$ are all equal, and $\row_j(E)=\row_j(A)+\row_j(B)$+
- +
-Hence by property 4 of the theorem, we have $\det(E)=\det(A)+\det(B)=\det(A)+0=\det(A)$. ■ +
- +
-We have now seen the effect of each of the three types of [[ERO]] on the determinant of a matrix: +
- +
-  - changing the order of the rows of the matrix multiplies the determinant by $-1$; +
-  - multiplying one of the rows of the matrix by $c\in \mathbb{R}multiplies the determinant by $c$; and +
-  - replacing row $j$ by "row $j$ ${}+{}$ $c\times {}$ (row $i$)", where $c$ is a non-zero real number and $i\ne jdoes not change the determinant. +
- +
-Moreover, since $\det(A)=\det(A^T)$, this all applies equally to columns instead of rows. +
- +
-We can use EROs to put a matrix into upper triangular form, and then finding the determinant is easy: just multiply the diagonal entries togetherWe just have to keep track of how the determinant is changed by the EROs of types 1 and 2. +
- +
-==== Example: using EROs to find the determinant ==== +
- +
-\begin{align*}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}} \vm{1&3&1&3\\\color{red}4&\color{red}8&\color{red}0&\color{red}{12}\\0&1&3&6\\2&2&1&6}&= \color{red}{4}\vm{1&3&1&\color{blue}3\\1&2&0&\color{blue}3\\0&1&3&\color{blue}6\\2&2&1&\color{blue}6}\\&=4\cdot \color{blue}3\vm{\color{green}1&3&1&1\\\color{red}1&2&0&1\\\color{red}0&1&3&2\\\color{red}2&2&1&2} +
-\\&=12\vm{1&3&1&1\\\color{blue}0&\color{blue}{-1}&\color{blue}{-1}&\color{blue}{0}\\\color{blue}0&\color{blue}1&\color{blue}3&\color{blue}2\\0&-4&-1&-0} +
-\\&=\color{blue}{-}12\vm{1&3&1&1\\0&\color{green}1&3&2\\0&\color{red}{-1}&{-1}&{0}\\0&\color{red}{-4}&-1&0} +
-\\&=-12\vm{1&3&1&1\\0&1&3&2\\0&0&\color{green}2&2\\0&0&\color{red}{11}&8} +
-\\&=-12\vm{1&3&1&1\\0&1&3&2\\0&0&2&2\\0&0&0&-3} +
-\\&=-12(1)(1)(2)(-3)=72. +
-\end{align*} +
- +
lecture_14.1457534885.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki