User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_14

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_14 [2015/03/05 11:22] – [Step 3: the determinant of a $3\times 3$ matrix using Laplace expansion along the first row] rupertlecture_14 [2017/03/09 10:49] (current) – [Corollary on invertibility] rupert
Line 1: Line 1:
-==== Observation: the transpose swaps rows with columns ====+=== Example ===
  
-Formally, for any matrix $A$ and any $i,j$, we have +\begin{align*}\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}\det\mat{1&2&3\\7&8&9\\11&12&13} &= 1\cdot C_{11+ 2 C_{12+ 3 C_{13}\\ 
-\begin{align*}\def\col#1{\text{col}_{#1}}\def\row#1{\text{row}_{#1}} +&= 1 \cdot (+M_{11}+ 2 \cdot (-M_{12}) + 3 \cdot(+M_{13})\\ 
-\row i(A^T)&=\col i(A)^T\\\col j(A^T)&=\row j(A)^T +&M_{11}-2M_{12}+3M_{13}\
-.\end{align*}+&= \det\mat{8&9\\12&13} -2\det\mat{7&9\\11&13} + 3\det\mat{7&8\\11&12}\\ 
 +&(8\cdot 13-9\cdot 12) -2(7\cdot 13-9\cdot 11)+3(7\cdot 12-8\cdot 11)\\ 
 +&=-4 -2(-8)+3(-4)\\ 
 +&=-4+16-12\\ 
 +&=0.\end{align*}
  
-==== Theorem: the transpose reverses the order of matrix multiplication ====+From this, we can conclude that $\mat{1&2&3\\7&8&9\\11&12&13}$ is //not// invertible.
  
-If $A$ and $B$ are matrices and the [[matrix product]] $AB$ is defined, then $B^TA^T$ is also defined. Moreover, in this case we have +=== Notation ===
-\[ (AB)^T=B^TA^T.\]+
  
-=== Proof ===+To save having to write $\det$ all the time, we sometimes write the entries of a matrix inside vertical bars $|\ |$ to mean the determinant of that matrix. Using this notation (and doing a few steps in our heads), we can rewrite the previous example as: 
 + 
 +\begin{align*}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\vm{1&2&3\\7&8&9\\11&12&13} &1\vm{8&9\\12&13} -2\vm{7&9\\11&13} + 3\vm{7&8\\11&12}\\ 
 +&=-4 -2(-8)+3(-4)\\ 
 +&=0.\end{align*} 
 + 
 +==== Step 4: the determinant of an $n\times n$ matrix ==== 
 + 
 + 
 +===Definition=== 
 + 
 +{{page>determinant of an nxn matrix}} 
 + 
 +===Example===
  
-If $AB$ is defined, then $A$ is $n\times m$ and $B$ is $m\times k$ for some $n,m,k$, so $B^T$ is $k\times m$ and $A^T$ is $m\times n$, so $B^TA^T$ is defined. Moreover, in this case $B^TA^T$ is an $k\times n$ matrix, and $AB$ is an $n\times k$ matrix, so $(AB)^T$ is a $k\times n$ matrix. Hence $B^TA^T$ has the same size as $(AB)^T$. To show that they are equal, we calculate, using the fact that the transpose swaps rows with columns: 
 \begin{align*} \begin{align*}
-\text{the }(i,j)\textentry of }(AB)^T&\text{the }(j,i)\textentry of }AB +\def\vm#1{\begin{vmatrix}#1\end{vmatrix}
-\\&= \row j(A)\cdot\col i(B) +\vm{\color{red}1&\color{red}0&\color{red}2&\color{red}3\\0&2&1&-1\\2&0&0&1\\3&0&4&2} &= \color{red}1\vm{\color{blue}2&\color{blue}1&\color{blue}-1\\0&0&1\\0&4&2}-\color{red}0\vm{0&1&-1\\2&0&1\\3&4&2}+\color{red}2\vm{\color{orange}0&\color{orange}2&\color{orange}{-1}\\2&0&1\\3&0&2}-\color{red}3\vm{\color{purple}0&\color{purple}2&\color{purple}1\\2&0&0\\3&0&4}\\ 
-\\&=\col i(B)^T\cdot \row j(A)^T \quad\text{by the previous Lemma} +&1\left(\color{blue}2\vm{0&1\\4&2}-\color{blue}1\vm{0&1\\0&2}\color{blue}{-1}\vm{0&0\\0&4}\right)-0+2\left(\color{orange}0-\color{orange}{2}\vm{2&1\\3&2}\color{orange}{-1}\vm{2&0\\3&0}\right)-3\left(\color{purple}0-\color{purple}2\vm{2&0\\3&4}+\color{purple}1\vm{2&0\\3&0}\right)\\ 
-\\&=\row i(B^T)\cdot \col j(A^T) \quad\text{by the Observation} +&=1(2(-4)-0-0)+2(-2(1)-0)-3(-2(8)+0)\\ 
-\\&=\text{the }(i,j)\textentry of }B^TA^T+&=-8-4+48\\ 
 +&=36.
 \end{align*} \end{align*}
-Hence $(AB)^T=B^TA^T$. ■  
  
-===== Determinants of $n\times n$ matrices =====+==== Theorem: Laplace expansion along any row or column gives the determinant ====
  
-Given any $n\times nmatrix $A$, it is possible to define a number $\det(A)$  (as a formula using the entries of $A$) so that  +  - For any fixed $i$$\det(A)=a_{i1}C_{i1}+a_{i2}C_{i2}+\dots+a_{in}C_{in}$ (Laplace expansion along row $i$) 
-\A\textis invertible} \iff \det(A)\ne0.\]+  - For any fixed $j$: $\det(A)=a_{1j}C_{1j}+a_{2j}C_{2j}+\dots+a_{nj}C_{nj}$ (Laplace expansion along column $j$)
  
-  - If $A$ is a $1\times 1$ matrix, then $A=[a]$ for some number $a$, and we just define $\det[a]=a$. +=== Example ===
-  - If $A$ is a $2\times 2$ matrix, then $A=\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\mat{a&b\\c&d}$, and we've seen that $\det\mat{a&b\\c&d}=ad-bc$. +
-  - If $A$ is a $3\times 3$ matrix, then $A=\mat{a&b&c\\d&e&f\\g&h&i}$. It turns out that $\det(A)=aei-afh+bfg-bdi+cdh-ceg$. +
-  - If $A$ is a $4\times 4$ matrix, then the formula for $\det(A)$ is more complicated still, with $24$ terms. +
-  - If $A$ is a $5\times 5$ matrix, then the formula for $\det(A)$ has $120$ terms.+
  
-Trying to memorise a formula in every case (or even in the $3\times 3$ case!) isn't convenient unless we understand it somehow. We will approach this is several steps.+We can make life easier by choosing expansion rows or columns with lots of zeros, if possible. Let's redo the previous example with this in mind:
  
-==== Step 1: minors ====+\begin{align*} 
 +\def\vm#1{\begin{vmatrix}#1\end{vmatrix}} 
 +\vm{1&\color{red}0&2&3\\0&\color{red}2&1&-1\\2&\color{red}0&0&1\\3&\color{red}0&4&2} & 
 +-\color{red}0+\color{red}2\vm{1&2&3\\\color{purple}2&\color{purple}0&\color{purple}1\\3&4&2}-\color{red}0+\color{red}0\\ 
 +&=2\left(-\color{purple}2\vm{2&3\\4&2}+\color{purple}0-\color{purple}1\vm{1&2\\3&4}\right)\\ 
 +&=2(-2(-8)-(-2))\\ 
 +&=36. 
 +\end{align*}
  
-=== Definition === +==== Definition: upper triangular matrices ====
-{{page>minor}}+
  
-=== Examples ===+An $n\times n$ matrix $A$ is **upper triangular** if all the entries below the main diagonal are zero.
  
-  * If $A=\mat{3&5\\-4&7}$, then $M_{11}=\det[7]=7$, $M_{12}=\det[-4]=-4$, $M_{21}=5$, and $M_{22}=3$. 
-  * If $A=\mat{1&2&3\\7&8&9\\11&12&13}$, then $M_{23}=\det\mat{1&2\\11&12}=1\cdot 12-2\cdot 11=-10$ and $M_{32}=\det\mat{1&3\\7&9}=-12$. 
  
-==== Step 2cofactors ====+==== Definitiondiagonal matrices ====
  
-===Definition=== +An $n\times n$ matrix $A$ is **diagonal** if the only non-zero entries are on its main diagonal.
-{{page>cofactor}}+
  
-Note that $(-1)^{i+j}$ is $+1$ or $-1$, and can looked up in the matrix of signs +==== Corollary: the determinant of upper triangular matrices and diagonal matrices ====
-$\mat{+&-&+&-&\dots\\-&+&-&+&\dots\\+&-&+&-&\dots\\\vdots&\vdots&\vdots&\vdots&\ddots}$. +
-This matrix starts with a $+$ in the $(1,1)$ entry (corresponding to $(-1)^{1+1}=(-1)^2=+1$) and the signs then alternate.+
  
-===Examples===+  - The determinant of an upper triangular $n\times n$ matrix is the product of its diagonal entries: $\det(A)=a_{11}a_{22}\dots a_{nn}$. 
 +  - The determinant of an $n\times n$ diagonal matrix is the product of its diagonal entries: $\det(A)=a_{11}a_{22}\dots a_{nn}$.
  
-  * If $A=\mat{3&5\\-4&7}$, then $C_{11}=+M_{11}=\det[7]=7$, $C_{12}=-M_{12}=-\det[-4]=4$, $C_{21}=-5$, and $C_{22}=3$. +=== Proof ===
-  * If $A=\mat{1&2&3\\7&8&9\\11&12&13}$, then $C_{23}=-M_{23}=-(-10)=10$ and $C_{33}=+M_{33}=\det\mat{1&2\\7&8}=-6$. +
-==== Step 3: the determinant of a $3\times 3$ matrix using Laplace expansion along the first row ====+
  
-===Definition===+  - This is true for $n=1$, trivially. For $n>1$, assume inductively that it is true for $(n-1)\times (n-1)$ matrices and use the Laplace expansion of an upper triangular $n\times n$ matrix $A$ along the first column of $A$ to see that $\det(A)=a_{11}C_{11}+0+\dots+0=a_{11}C_{11}$. Now $C_{11}$ is the determinant of the $(n-1)\times (n-1)$ matrix formed by removing the first row and and column of $A$, and this matrix is upper triangular with diagonal entries $a_{22},a_{33},\dots,a_{nn}$. By our inductive assumption, we have $C_{11}=a_{22}a_{33}\dots a_{nn}$. So $\det(A)=a_{11}C_{11}=a_{11}a_{22}a_{33}\dots a_{nn}$ as desired. 
 +  - Any diagonal matrix is upper triangular, so this is a special case of statement 1. ■
  
-{{page>determinant of a 3x3 matrix}}+==== Examples ====
  
 +  - For any $n$, we have $\det(I_n)=1\cdot 1\cdots 1 = 1$.
 +  - For any $n$, we have $\det(5I_n)=5^n$.
 +  - $\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\vm{1&9&43&23434&4&132\\0&3&43&2&-1423&-12\\0&0&7&19&23&132\\0&0&0&2&0&0\\0&0&0&0&-1&-903\\0&0&0&0&0&6}=1\cdot3\cdot7\cdot2\cdot(-1)\cdot6 = 252$.
  
  
-=== Example ===+==== Theorem: important properties of the determinant ====
  
-\begin{align*}\det\mat{1&2&3\\7&8&9\\11&12&13} &= 1\cdot C_{11} + 2 C_{12} + 3 C_{13}\\ +Let $A$ be an $n\times n$ matrix
-&= 1 \cdot (+M_{11}) + 2 \cdot (-M_{12}) + 3 \cdot(+M_{13})\\ +
-&= M_{11}-2M_{12}+3M_{13}\\ +
-&= \det\mat{8&9\\12&13} -2\det\mat{7&9\\11&13} + 3\det\mat{7&8\\11&12}\\ +
-&= (8\cdot 13-9\cdot 12) -2(7\cdot 13-9\cdot 11)+3(7\cdot 12-8\cdot 11)\\ +
-&=-4 -2(-8)+3(-4)\\ +
-&=-4+16-12\\ +
-&=0.\end{align*}+
  
-From this, we can conclude that $\mat{1&2&3\\7&8&9\\11&12&13}$ is invertible.+  - $A$ is invertible if and only if $\det(A)\ne0$. 
 +  - $\det(A^T)=\det(A)$ 
 +  - If $B$ is another $n\times n$ matrix, then $\det(AB)=\det(A)\det(B)$
  
-=== Notation ===+==== Corollary on invertibility ====
  
-To save having to write $\detall the time, we sometimes write the entries of a matrix inside vertical bars $|\ |to mean the determinant of that matrix. Using this notation (and doing a few steps in our heads), we can rewrite the previous example as:+  - $A^Tis invertible if and only if $Ais invertible 
 +  - $AB$ is invertible if and only if **both** $A$ and $B$ are invertible
  
-\begin{align*}\def\vm#1{\begin{vmatrix}#1\end{vmatrix}}\vm{1&2&3\\7&8&9\\11&12&13} &1\vm{8&9\\12&13} -2\vm{7&9\\11&13} + 3\vm{7&8\\11&12}\\ +=== Proof === 
-&=-4 -2(-8)+3(-4)\+ 
-&=0.\end{align*}+  - We have $\det(A^T)=\det(A)$. So $A^T$ is invertible $\iff$ $\det(A^T)\ne0$ $\iff$ $\det(A)\ne 0$ $\iff$ $A$ is invertible. 
 +  - We have $\det(AB)=\det(A)\det(B)$. So $AB$ is invertible $\iff$ $\det(AB)\ne 0$ $\iff$ $\det(A)\det(B)\ne0$ $\iff$ $\det(A)\ne0$ and $\det(B)\ne 0$ $ \iff$ $A$ is invertible and $B$ is invertible
lecture_14.1425554530.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki