Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision |
| lecture_13_slides [2017/03/06 17:44] – [Examples of cofactors] rupert | lecture_13_slides [2017/03/06 17:48] (current) – [Example] rupert |
|---|
| * = $-4 -2(-8)+3(-4)$ | * = $-4 -2(-8)+3(-4)$ |
| * = $0$. | * = $0$. |
| | * (So this matrix isn't invertible!) |
| * $\mat{1&2&3\\7&8&9\\11&12&13}$ has zero determinant | |
| * So this matrix is //not// invertible. | |
| |
| ==== Notation ==== | ==== Notation ==== |
| |
| \begin{align*} | \begin{align*} |
| \vm{\color{red}1&\color{red}0&\color{red}2&\color{red}3\\0&2&1&-1\\2&0&0&1\\3&0&4&2} &= \color{red}1\vm{\color{blue}2&\color{blue}1&\color{blue}-1\\0&0&1\\0&4&2}-\color{red}0\vm{0&1&-1\\2&0&1\\3&4&2}+\color{red}2\vm{\color{orange}0&\color{orange}2&\color{orange}{-1}\\2&0&1\\3&0&2}-\color{red}3\vm{\color{purple}0&\color{purple}2&\color{purple}1\\2&0&0\\3&0&4}\\ | \def\vm#1{\left|\begin{smallmatrix}#1\end{smallmatrix}\right|} |
| &= 1\left(\color{blue}2\vm{0&1\\4&2}-\color{blue}1\vm{0&1\\0&2}\color{blue}{-1}\vm{0&0\\0&4}\right)\\&\quad +2\left(\color{orange}0-\color{orange}{2}\vm{2&1\\3&2}\color{orange}{-1}\vm{2&0\\3&0}\right)\\&\quad - 3\left(\color{purple}0-\color{purple}2\vm{2&0\\3&4}+\color{purple}1\vm{2&0\\3&0}\right)\\ | \vm{\color{red}1&\color{red}0&\color{red}2&\color{red}3\\0&2&1&-1\\2&0&0&1\\3&0&4&2} |
| &=1(2(-4)-0-0)+2(-2(1)-0)-3(-2(8)+0)\\ | &= \color{red}1\vm{\color{blue}2&\color{blue}1&\color{blue}-1\\0&0&1\\0&4&2}-\color{red}0\vm{0&1&-1\\2&0&1\\3&4&2}+\color{red}2\vm{\color{orange}0&\color{orange}2&\color{orange}{-1}\\2&0&1\\3&0&2}-\color{red}3\vm{\color{purple}0&\color{purple}2&\color{purple}1\\2&0&0\\3&0&4} |
| &=-8-4+48\\ | \\&= 1\left(\color{blue}2\vm{0&1\\4&2}-\color{blue}1\vm{0&1\\0&2}\color{blue}{-1}\vm{0&0\\0&4}\right) |
| | \\&\quad -0+2\left(\color{orange}0-\color{orange}{2}\vm{2&1\\3&2}\color{orange}{-1}\vm{2&0\\3&0}\right) |
| | \\&\quad -3\left(\color{purple}0-\color{purple}2\vm{2&0\\3&4}+\color{purple}1\vm{2&0\\3&0}\right) |
| | \\&=1(2(-4)-0-0)+2(-2(1)-0)-3(-2(8)+0) |
| | \\&=-8-4+48\\ |
| &=36. | &=36. |
| \end{align*} | \end{align*} |
| |