Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_13_slides
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| lecture_13_slides [2016/03/07 11:57] – [Example] rupert | lecture_13_slides [2017/03/06 17:48] (current) – [Example] rupert | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| ~~REVEAL~~ | ~~REVEAL~~ | ||
| + | |||
| + | ===== Recap: $2\times 2$ inverses ===== | ||
| + | |||
| + | * Let $A=\def\mat# | ||
| + | * $\det(A)=ad-bc$ (a number) | ||
| + | * $A$ is invertible if and only if $\det(A)\ne 0$ | ||
| + | * and we then have $A^{-1}=\frac1{\det(A)}\mat{d& | ||
| + | |||
| + | ==== Using the inverse to solve a matrix equation ==== | ||
| + | |||
| + | * Solve $\mat{1& | ||
| + | * Reminder: if $A$ invertible, solution to $AX=B$ is $X=A^{-1}B$ | ||
| + | * Write $A=\mat{1& | ||
| + | * $\det(A)=1(-2)-5(3)=-2-15=-17$ | ||
| + | * So $A$ is invertible, and $A^{-1}=-\frac1{17}\mat{-2& | ||
| + | * Solution is $X=A^{-1}\mat{4& | ||
| + | * $X=\frac1{17}\mat{8& | ||
| ===== The transpose of a matrix ===== | ===== The transpose of a matrix ===== | ||
| Line 49: | Line 66: | ||
| ====== $n\times n$ determinants ====== | ====== $n\times n$ determinants ====== | ||
| - | For an $n\times n$ matrix $A$, we'll define a number $\det(A)$ so that | + | For $A$: $n\times n$ we'll define a number $\det(A)$ so that |
| \[ A\text{ is invertible} \iff \det(A)\ne0.\] | \[ A\text{ is invertible} \iff \det(A)\ne0.\] | ||
| Line 76: | Line 93: | ||
| * Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant. | * Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant. | ||
| - | ==== Examples of minors ==== | + | ==== Examples of minors |
| Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant. | Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant. | ||
| - | - If $A=\mat{3& | + | Example: for $A=\mat{3& |
| - | * $M_{11}=\det[7]=7$ | + | * $M_{11}=\det[7]=7$ |
| - | * $M_{12}=\det[-4]=-4$ | + | * $M_{12}=\det[-4]=-4$ |
| - | * $M_{21}=5$ | + | * $M_{21}=5$ |
| - | * $M_{22}=3$. | + | * $M_{22}=3$. |
| - | - If $A=\mat{1& | + | |
| - | * $M_{23}=\det\mat{1& | + | ==== Examples of minors (2) ==== |
| - | * $M_{32}=\det\mat{1& | + | |
| + | Short version: to find $M_{ij}$: delete the row and col containing $(i,j)$ entry, then take determinant. | ||
| + | |||
| + | Example: for $A=\mat{1& | ||
| + | * $M_{23}=\det\mat{1& | ||
| + | * $M_{32}=\det\mat{1& | ||
| + | * etc | ||
| ==== Step 2: cofactors ==== | ==== Step 2: cofactors ==== | ||
| Line 100: | Line 123: | ||
| * Short version: minors with some sign changes (according to matrix of signs). | * Short version: minors with some sign changes (according to matrix of signs). | ||
| - | ====Examples of cofactors==== | + | ====Examples of cofactors |
| Short version: minors with sign changes $\mat{+& | Short version: minors with sign changes $\mat{+& | ||
| - | - If $A=\mat{3& | + | If $A=\mat{3& |
| - | * $C_{11}=+M_{11}=\det[7]=7$ | + | * $C_{11}=+M_{11}=\det[7]=7$ |
| - | * $C_{12}=-M_{12}=-\det[-4]=4$ | + | * $C_{12}=-M_{12}=-\det[-4]=4$ |
| - | * $C_{21}=-5$, | + | * $C_{21}=-5$, |
| - | - If $A=\mat{1& | + | |
| - | * $C_{23}=-M_{23}=-(-10)=10$ | + | ====Examples of cofactors (2)==== |
| - | * $C_{33}=+M_{33}=\det\mat{1& | + | |
| + | Short version: minors with sign changes $\mat{+& | ||
| + | |||
| + | If $A=\mat{1& | ||
| + | * $C_{23}=-M_{23}=-(-10)=10$ | ||
| + | * $C_{33}=+M_{33}=\det\mat{1& | ||
| + | * etc | ||
| ==== Step 3: the determinant of a $3\times 3$ matrix ==== | ==== Step 3: the determinant of a $3\times 3$ matrix ==== | ||
| Line 131: | Line 160: | ||
| * = $-4 -2(-8)+3(-4)$ | * = $-4 -2(-8)+3(-4)$ | ||
| * = $0$. | * = $0$. | ||
| - | + | | |
| - | * $\mat{1& | + | |
| - | | + | |
| ==== Notation ==== | ==== Notation ==== | ||
| Line 156: | Line 183: | ||
| \begin{align*} | \begin{align*} | ||
| - | \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\vm{\color{red}1& | + | \def\vm#1{\left|\begin{smallmatrix}# |
| - | &= 1\left(\color{blue}2\vm{0& | + | \vm{\color{red}1& |
| - | & | + | &= \color{red}1\vm{\color{blue}2& |
| - | & | + | \\&= 1\left(\color{blue}2\vm{0& |
| + | \\& | ||
| + | \\& | ||
| + | \\& | ||
| + | \\& | ||
| &=36. | &=36. | ||
| \end{align*} | \end{align*} | ||
| - | |||
lecture_13_slides.1457351851.txt.gz · Last modified: by rupert
