User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_13

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_13 [2016/03/08 10:57] rupertlecture_13 [2017/03/07 15:08] (current) – [Step 3: the determinant of a $3\times 3$ matrix using Laplace expansion along the first row] rupert
Line 1: Line 1:
 +==== Example ====
 +
 +Let's solve the matrix equation $\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\mat{1&5\\3&-2}X=\mat{4&1&0\\0&2&1}$ for $X$.
 +
 +Write $A=\mat{1&5\\3&-2}$. Then $\det(A)=1(-2)-5(3)=-2-15=-17$ which isn't zero, so $A$ is invertible. And $A^{-1}=\frac1{-17}\mat{-2&-5\\-3&1}=\frac1{17}\mat{2&5\\3&-1}$.
 +
 +
 +Hence the solution is $X=A^{-1}\mat{4&1&0\\0&2&1}=\frac1{17}\mat{2&5\\3&-1}\mat{4&1&0\\0&2&1}=\frac1{17}\mat{8&12&5\\12&1&-1}$.
 +
  
 ====== The transpose of a matrix ====== ====== The transpose of a matrix ======
Line 87: Line 96:
  
  
-=== Example === 
- 
-\begin{align*}\det\mat{1&2&3\\7&8&9\\11&12&13} &= 1\cdot C_{11} + 2 C_{12} + 3 C_{13}\\ 
-&= 1 \cdot (+M_{11}) + 2 \cdot (-M_{12}) + 3 \cdot(+M_{13})\\ 
-&= M_{11}-2M_{12}+3M_{13}\\ 
-&= \det\mat{8&9\\12&13} -2\det\mat{7&9\\11&13} + 3\det\mat{7&8\\11&12}\\ 
-&= (8\cdot 13-9\cdot 12) -2(7\cdot 13-9\cdot 11)+3(7\cdot 12-8\cdot 11)\\ 
-&=-4 -2(-8)+3(-4)\\ 
-&=-4+16-12\\ 
-&=0.\end{align*} 
- 
-From this, we can conclude that $\mat{1&2&3\\7&8&9\\11&12&13}$ is //not// invertible. 
  
  
lecture_13.1457434631.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki