User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_13

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_13 [2016/03/07 10:49] rupertlecture_13 [2017/03/07 15:08] (current) – [Step 3: the determinant of a $3\times 3$ matrix using Laplace expansion along the first row] rupert
Line 1: Line 1:
 +==== Example ====
 +
 +Let's solve the matrix equation $\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\mat{1&5\\3&-2}X=\mat{4&1&0\\0&2&1}$ for $X$.
 +
 +Write $A=\mat{1&5\\3&-2}$. Then $\det(A)=1(-2)-5(3)=-2-15=-17$ which isn't zero, so $A$ is invertible. And $A^{-1}=\frac1{-17}\mat{-2&-5\\-3&1}=\frac1{17}\mat{2&5\\3&-1}$.
 +
 +
 +Hence the solution is $X=A^{-1}\mat{4&1&0\\0&2&1}=\frac1{17}\mat{2&5\\3&-1}\mat{4&1&0\\0&2&1}=\frac1{17}\mat{8&12&5\\12&1&-1}$.
 +
  
 ====== The transpose of a matrix ====== ====== The transpose of a matrix ======
Line 18: Line 27:
 If $a$ is a $1\times m$ row vector and $b$ is an $m\times 1$ column vector, then If $a$ is a $1\times m$ row vector and $b$ is an $m\times 1$ column vector, then
 \[ ab=b^Ta^T.\] \[ ab=b^Ta^T.\]
 +
 +==== Observation: the transpose swaps rows with columns ====
 +
 +Formally, for any matrix $A$ and any $i,j$, we have
 +\begin{align*}\def\col#1{\text{col}_{#1}}\def\row#1{\text{row}_{#1}}
 +\row i(A^T)&=\col i(A)^T\\\col j(A^T)&=\row j(A)^T
 +.\end{align*}
 +
 +==== Theorem: the transpose reverses the order of matrix multiplication ====
 +
 +If $A$ and $B$ are matrices and the [[matrix product]] $AB$ is defined, then $B^TA^T$ is also defined. Moreover, in this case we have
 +\[ (AB)^T=B^TA^T.\]
 +
 +=== Proof ===
 +
 +If $AB$ is defined, then $A$ is $n\times m$ and $B$ is $m\times k$ for some $n,m,k$, so $B^T$ is $k\times m$ and $A^T$ is $m\times n$, so $B^TA^T$ is defined. Moreover, in this case $B^TA^T$ is an $k\times n$ matrix, and $AB$ is an $n\times k$ matrix, so $(AB)^T$ is a $k\times n$ matrix. Hence $B^TA^T$ has the same size as $(AB)^T$. To show that they are equal, we calculate, using the fact that the transpose swaps rows with columns:
 +\begin{align*}
 +\text{the }(i,j)\text{ entry of }(AB)^T&= \text{the }(j,i)\text{ entry of }AB
 +\\&= \row j(A)\cdot\col i(B)
 +\\&=\col i(B)^T\cdot \row j(A)^T \quad\text{by the previous Lemma}
 +\\&=\row i(B^T)\cdot \col j(A^T) \quad\text{by the Observation}
 +\\&=\text{the }(i,j)\text{ entry of }B^TA^T
 +\end{align*}
 +Hence $(AB)^T=B^TA^T$. ■ 
 +
 +====== Determinants of $n\times n$ matrices ======
 +
 +Given any $n\times n$ matrix $A$, it is possible to define a number $\det(A)$  (as a formula using the entries of $A$) so that 
 +\[ A\text{ is invertible} \iff \det(A)\ne0.\]
 +
 +  - If $A$ is a $1\times 1$ matrix, say $A=[a]$, then we just define $\det[a]=a$.
 +  - If $A$ is a $2\times 2$ matrix, say $A=\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\mat{a&b\\c&d}$, then we've seen that $\det(A)=ad-bc$.
 +  - If $A$ is a $3\times 3$ matrix, say $A=\mat{a&b&c\\d&e&f\\g&h&i}$, then it turns out that $\det(A)=aei-afh+bfg-bdi+cdh-ceg$.
 +  - If $A$ is a $4\times 4$ matrix, then the formula for $\det(A)$ is more complicated still, with $24$ terms.
 +  - If $A$ is a $5\times 5$ matrix, then the formula for $\det(A)$ has $120$ terms.
 +
 +Trying to memorise a formula in every case (or even in the $3\times 3$ case!) isn't convenient unless we understand it somehow. We will approach this is several steps.
 +
 +==== Step 1: minors ====
 +
 +=== Definition ===
 +{{page>minor}}
 +
 +=== Examples ===
 +
 +  * If $A=\mat{3&5\\-4&7}$, then $M_{11}=\det[7]=7$, $M_{12}=\det[-4]=-4$, $M_{21}=5$, and $M_{22}=3$.
 +  * If $A=\mat{1&2&3\\7&8&9\\11&12&13}$, then $M_{23}=\det\mat{1&2\\11&12}=1\cdot 12-2\cdot 11=-10$ and $M_{32}=\det\mat{1&3\\7&9}=-12$.
 +
 +==== Step 2: cofactors ====
 +
 +===Definition===
 +{{page>cofactor}}
 +
 +Note that $(-1)^{i+j}$ is $+1$ or $-1$, and can looked up in the matrix of signs: 
 +$\mat{+&-&+&-&\dots\\-&+&-&+&\dots\\+&-&+&-&\dots\\\vdots&\vdots&\vdots&\vdots&\ddots}$.
 +This matrix starts with a $+$ in the $(1,1)$ entry (corresponding to $(-1)^{1+1}=(-1)^2=+1$) and the signs then alternate.
 +
 +===Examples===
 +
 +  * If $A=\mat{3&5\\-4&7}$, then $C_{11}=+M_{11}=\det[7]=7$, $C_{12}=-M_{12}=-\det[-4]=4$, $C_{21}=-5$, and $C_{22}=3$.
 +  * If $A=\mat{1&2&3\\7&8&9\\11&12&13}$, then $C_{23}=-M_{23}=-(-10)=10$ and $C_{33}=+M_{33}=\det\mat{1&2\\7&8}=-6$.
 +==== Step 3: the determinant of a $3\times 3$ matrix using Laplace expansion along the first row ====
 +
 +===Definition===
 +
 +{{page>determinant of a 3x3 matrix}}
 +
 +
 +
 +
  
lecture_13.1457347750.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki