User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_13

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_13 [2015/03/05 09:03] – [Lemma: transposes and row-column multiplication] rupertlecture_13 [2017/03/07 15:08] (current) – [Step 3: the determinant of a $3\times 3$ matrix using Laplace expansion along the first row] rupert
Line 1: Line 1:
-==== Corollary ==== +==== Example ====
-If $A$ is an $n\times n$ matrix and $X$ is an $n\times k$ matrix with $X\ne 0_{n\times k}$ and $AX=0_{n\times k}$, then $A$ is not invertible.+
  
-=== Proof === +Let's solve the matrix equation $\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\mat{1&5\\3&-2}X=\mat{4&1&0\\0&2&1}$ for $X$.
-Apply the previous corollary (from the end of lecture 11) to $X$ and to the matrix $Y=0_{n\times k}$: we have $X\ne Y$ but $AY=A0_{n\times k}=0_{n\times k}$, so $AX=AY$. ■ +
  
-==== Example ====+Write $A=\mat{1&5\\3&-2}$. Then $\det(A)=1(-2)-5(3)=-2-15=-17$ which isn't zero, so $A$ is invertible. And $A^{-1}=\frac1{-17}\mat{-2&-5\\-3&1}=\frac1{17}\mat{2&5\\3&-1}$.
  
-The matrix $\newcommand{\mat}[1]{\begin{bmatrix}#1\end{bmatrix}}A=\mat{1&4&5\\2&5&7\\3&6&9}$ is not invertible, since $X=\mat{1\\1\\-1}$ is non-zero, and $AX=0_{3\times 1}$. 
  
-===== $2\times 2$ matrices: determinants and invertibility =====+Hence the solution is $X=A^{-1}\mat{4&1&0\\0&2&1}=\frac1{17}\mat{2&5\\3&-1}\mat{4&1&0\\0&2&1}=\frac1{17}\mat{8&12&5\\12&1&-1}$.
  
-==== Question ==== 
  
-Which $2\times 2$ matrices are invertible? For the invertible matrices, can we find their inverse?+====== The transpose of a matrix ======
  
-==== Lemma ====+We defined this in tutorial sheet 4:
  
-If $A=\mat{a&b\\c&d}$ and $J=\mat{d&-b\\-c&a}$, then we have +{{page>transpose}
-\[ AJ=\delta I_2=JA\] +==== Exercise: simple properties of the transpose ==== 
-where $\delta=ad-bc$.+Prove that for any matrix $A$:
  
-=== Proof ===+  * $(A^T)^T=A$; and 
 +  * $(A+B)^T=A^T+B^T$ if $A$ and $B$ are matrices of the [[same size]]; and 
 +  * $(cA)^T=c(A^T)$ for any [[scalar]] $c$. 
 +   
 +In tutorial sheet 4, we proved:
  
-This is a calculation (done in the lectures; you should also check it yourself). ■ +==== Lemma: transposes and row-column multiplication ====
  
-==== Definition: the determinant of a $2\times 2matrix ====+If $a$ is a $1\times mrow vector and $b$ is an $m\times 1$ column vector, then 
 +\[ ab=b^Ta^T.\]
  
-{{page>determinant of a 2x2 matrix}}+==== Observation: the transpose swaps rows with columns ====
  
-==== Theorem: the determinant determines the invertibility (and inverseof a $2\times 2$ matrix ====+Formally, for any matrix $A$ and any $i,j$, we have 
 +\begin{align*}\def\col#1{\text{col}_{#1}}\def\row#1{\text{row}_{#1}} 
 +\row i(A^T)&=\col i(A)^T\\\col j(A^T)&=\row j(A)^T 
 +.\end{align*}
  
-Let $A=\mat{a&b\\c&d}$ be a $2\times 2$ matrix.+==== Theorem: the transpose reverses the order of matrix multiplication ====
  
-  - $A$ is invertible if and only if $\det(A)\ne0$+If $A$ and $Bare matrices and the [[matrix product]] $AB$ is defined, then $B^TA^T$ is also defined. Moreover, in this case we have 
-  - If $A$ is invertible, then $A^{-1}=\frac{1}{\det(A)}\mat{d&-b\\-c&a}$.+\(AB)^T=B^TA^T.\]
  
 === Proof === === Proof ===
  
-If $A=0_{2\times 2}$, then $\det(A)=0$ and $A$ is not invertible. So the statement is true is this special case.+If $AB$ is defined, then $A$ is $n\times mand $B$ is $m\times k$ for some $n,m,k$, so $B^T$ is $k\times m$ and $A^T$ is $m\times n$, so $B^TA^T$ is defined. Moreover, in this case $B^TA^T$ is an $k\times n$ matrix, and $AB$ is an $n\times k$ matrix, so $(AB)^T$ is a $k\times n$ matrix. Hence $B^TA^T$ has the same size as $(AB)^T$. To show that they are equal, we calculate, using the fact that the transpose swaps rows with columns: 
 +\begin{align*} 
 +\text{the }(i,j)\text{ entry of }(AB)^T&= \text{the }(j,i)\text{ entry of }AB 
 +\\&= \row j(A)\cdot\col i(B) 
 +\\&=\col i(B)^T\cdot \row j(A)^T \quad\text{by the previous Lemma} 
 +\\&=\row i(B^T)\cdot \col j(A^T) \quad\text{by the Observation} 
 +\\&=\text{the }(i,j)\text{ entry of }B^TA^T 
 +\end{align*} 
 +Hence $(AB)^T=B^TA^T$■ 
  
-Now assume that $A\ne0_{2\times 2}and let $J=\mat{d&-b\\-c&a}$. +====== Determinants of $n\times nmatrices ======
  
-By the previous lemmawe have \[AJ=(\det(A))I_2=JA.\]+Given any $n\times n$ matrix $A$it is possible to define a number $\det(A)$  (as a formula using the entries of $A$) so that  
 +\[ A\text{ is invertible} \iff \det(A)\ne0.\]
  
-If $\det(A)\ne0$, then multiplying this equation through by the scalar $\frac1{\det(A)}$, we get  +  - If $A$ is a $1\times 1matrixsay $A=[a]$, then we just define $\det[a]=a$. 
-\[ A\left(\frac1{\det(A)}J\right)=I_2=\left(\frac1{\det(A)}J\right) A,\+  - If $A$ is a $2\times 2$ matrix, say $A=\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}\mat{a&b\\c&d}$, then we've seen that $\det(A)=ad-bc$. 
-so if we write $B=\frac1{\det(A)}Jto make this look simpler, then  we obtain +  - If $A$ is a $3\times 3matrix, say $A=\mat{a&b&c\\d&e&f\\g&h&i}$, then it turns out that $\det(A)=aei-afh+bfg-bdi+cdh-ceg$. 
-\[ AB=I_2=BA,\] +  - If $A$ is $4\times 4$ matrix, then the formula for $\det(A)$ is more complicated still, with $24$ terms. 
-so in this case $A$ is invertible with inverse $B=\frac1{\det(A)}J=\frac1{\det(A)}\mat{d&-b\\-c&a}$.+  - If $A$ is a $5\times 5$ matrix, then the formula for $\det(A)$ has $120$ terms.
  
-If $\det(A)=0$, then $AJ=0_{2\times 2}$  and $J\ne 0_{2\times2}$ (since $A\ne0_{2\times2}$, and $J$ is obtained from $A$ by swapping two entries and multiplying the others by $-1$). Hence by the previous corollary, $A$ is not invertible in this case ■ +Trying to memorise a formula in every case (or even in the $3\times 3case!isn't convenient unless we understand it somehowWe will approach this is several steps.
  
-==== Examples ====+==== Step 1: minors ====
  
-  * $\det\mat{2&3\\-4&-6}=2(-6)-3(-4)=-12-(-12)=0$, so $\mat{2&3\\-4&-6}$ is not invertible. +=== Definition === 
-  * $\det\mat{2&3\\-4&5}=2(5)-3(-4)=10-(-12)=22\ne0$, so $\mat{2&3\\-4&5}$ is invertible with inverse \[\mat{2&3\\-4&5}^{-1}=\frac1{22}\mat{5&-3\\4&2} = \mat{\frac 5{22}&-\frac3{22}\\\frac2{11}&\frac1{11}}.\]+{{page>minor}}
  
 +=== Examples ===
  
-====== The transpose of a matrix ======+  * If $A=\mat{3&5\\-4&7}$, then $M_{11}=\det[7]=7$, $M_{12}=\det[-4]=-4$, $M_{21}=5$, and $M_{22}=3$. 
 +  * If $A=\mat{1&2&3\\7&8&9\\11&12&13}$, then $M_{23}=\det\mat{1&2\\11&12}=1\cdot 12-2\cdot 11=-10$ and $M_{32}=\det\mat{1&3\\7&9}=-12$.
  
-Recall from tutorial sheet 4 that the transpose of an $n\times m$ matrix $A$ is the $m\times n$ matrix $A^T$ whose $(i,j)$ entry is the $(j,i)$ entry of $A$. In other words, to get $A^T$ from $A$, you write the rows of $A$ as columns, and vice versa; equivalently, you reflect $A$ in its main diagonal.+==== Step 2: cofactors ====
  
-For example, $\mat{a&b\\c&d}^T=\mat{a&c\\b&d}$ and $\mat{1&2&3\\4&5&6}^T=\mat{1&4\\2&5\\3&6}$.+===Definition=== 
 +{{page>cofactor}} 
 + 
 +Note that $(-1)^{i+j}$ is $+1$ or $-1$and can looked up in the matrix of signs:  
 +$\mat{+&-&+&-&\dots\\-&+&-&+&\dots\\+&-&+&-&\dots\\\vdots&\vdots&\vdots&\vdots&\ddots}$. 
 +This matrix starts with a $+$ in the $(1,1)$ entry (corresponding to $(-1)^{1+1}=(-1)^2=+1$) and the signs then alternate. 
 + 
 +===Examples=== 
 + 
 +  * If $A=\mat{3&5\\-4&7}$, then $C_{11}=+M_{11}=\det[7]=7$, $C_{12}=-M_{12}=-\det[-4]=4$, $C_{21}=-5$, and $C_{22}=3$. 
 +  * If $A=\mat{1&2&3\\7&8&9\\11&12&13}$, then $C_{23}=-M_{23}=-(-10)=10$ and $C_{33}=+M_{33}=\det\mat{1&2\\7&8}=-6$. 
 +==== Step 3: the determinant of a $3\times 3$ matrix using Laplace expansion along the first row ==== 
 + 
 +===Definition=== 
 + 
 +{{page>determinant of a 3x3 matrix}}
  
-==== Exercise: simple properties of the transpose ==== 
-Prove that for any matrix $A$: 
  
-  * $(A^T)^T=A$; and 
-  * $(A+B)^T=A^T+B^T$ if $A$ and $B$ are matrices of the [[same size]]; and 
-  * $(cA)^T=c(A^T)$ for any [[scalar]] $c$. 
-   
-In tutorial sheet 4, we proved: 
  
-==== Lemma: transposes and row-column multiplication ==== 
  
-If $a$ is a $1\times m$ row vector and $b$ is an $m\times 1$ column vector, then 
-\[ ab=b^Ta^T.\] 
  
lecture_13.1425546189.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki