User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
lecture_11

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture_11 [2016/03/01 10:57] – [Example] rupertlecture_11 [2017/02/28 12:07] (current) rupert
Line 23: Line 23:
 So there is not a unique solution to $AX=B$, for $B$ the zero matrix. If $A$ was invertible, this would contradict the uniqueness statement of the last Proposition. So $A$ cannot be invertible. ■ So there is not a unique solution to $AX=B$, for $B$ the zero matrix. If $A$ was invertible, this would contradict the uniqueness statement of the last Proposition. So $A$ cannot be invertible. ■
  
-==== Example ====+==== Examples ==== 
 + 
 +  * We can now see why the matrix $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{1&2\\-3&-6}$ is not invertible. If $X=\mat{-2\\1}$ and $K=\mat{2\\-1}$, then $K$ is non-zero, but $AK=0_{2\times 1}$. So $A$ is not invertible, by the Corollary. 
 +  * $A=\mat{1&4&5\\2&5&7\\3&6&9}$ is not invertible, since $K=\mat{1\\1\\-1}$ is non-zero and $AK=0_{3\times 1}$. 
 + 
 +===== $2\times 2$ matrices: determinants and invertibility ===== 
 + 
 +==== Question ==== 
 + 
 +Which $2\times 2$ matrices are invertible? For the invertible matrices, can we find their inverse? 
 + 
 +==== Lemma ==== 
 + 
 +If $A=\mat{a&b\\c&d}$ and $J=\mat{d&-b\\-c&a}$, then we have 
 +\[ AJ=\delta I_2=JA\] 
 +where $\delta=ad-bc$. 
 + 
 +=== Proof === 
 + 
 +This is a calculation (done in the lectures; you should also check it yourself). ■  
 + 
 +==== Definition: the determinant of a $2\times 2$ matrix ==== 
 + 
 +{{page>determinant of a 2x2 matrix}} 
 + 
 +==== Theorem: the determinant determines the invertibility (and inverse) of a $2\times 2$ matrix ==== 
 + 
 +Let $A=\mat{a&b\\c&d}$ be a $2\times 2$ matrix. 
 + 
 +  - $A$ is invertible if and only if $\det(A)\ne0$. 
 +  - If $A$ is invertible, then $A^{-1}=\frac{1}{\det(A)}\mat{d&-b\\-c&a}$. 
 + 
 +=== Proof === 
 + 
 +If $A=0_{2\times 2}$, then $\det(A)=0$ and $A$ is not invertible. So the statement is true is this special case. 
 + 
 +Now assume that $A\ne0_{2\times 2}$ and let $J=\mat{d&-b\\-c&a}$.  
 + 
 +By the previous lemma, we have \[AJ=(\det(A))I_2=JA.\] 
 + 
 +If $\det(A)\ne0$, then multiplying this equation through by the scalar $\frac1{\det(A)}$, we get  
 +\[ A\left(\frac1{\det(A)}J\right)=I_2=\left(\frac1{\det(A)}J\right) A,\] 
 +so if we write $B=\frac1{\det(A)}J$ to make this look simpler, then  we obtain 
 +\[ AB=I_2=BA,\] 
 +so in this case $A$ is invertible with inverse $B=\frac1{\det(A)}J=\frac1{\det(A)}\mat{d&-b\\-c&a}$. 
 + 
 +If $\det(A)=0$, then $AJ=0_{2\times 2}$  and $J\ne 0_{2\times2}$ (since $A\ne0_{2\times2}$, and $J$ is obtained from $A$ by swapping two entries and multiplying the others by $-1$). Hence by the previous corollary, $A$ is not invertible in this case.  ■  
  
-We can now see why the matrix $\def\mat#1{\left[\begin{smallmatrix}#1\end{smallmatrix}\right]}A=\mat{1&2\\-3&-6}$ is not invertible. If $X=\mat{-2\\1}$ and $K=\mat{2\\-1}$, then $K$ is non-zero, but $AK=0_{2\times 1}$. So $A$ is not invertible, by the Corollary. 
lecture_11.1456829848.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki