User Tools

Site Tools


Plugin installed incorrectly. Rename plugin directory '_include' to 'include'.
Plugin installed incorrectly. Rename plugin directory '__include' to 'include'.
determinant_of_a_3x3_matrix

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
determinant_of_a_3x3_matrix [2015/03/05 11:17] rupertdeterminant_of_a_3x3_matrix [2015/03/24 10:05] (current) rupert
Line 1: Line 1:
-If $A=\mat{a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}}$ is a $3\times 3$ matrix, then  +If $\def\mat#1{\begin{bmatrix}#1\end{bmatrix}}A=\mat{a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}}$ is a $3\times 3$ matrix, then  
-\[\det A=a_{11}C_11+a_{12}C_{12}+a_{13}C_{13}.\]+\[\det A=a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}.\]
 Here $C_{ij}$ are the [[cofactors]] of $A$. Here $C_{ij}$ are the [[cofactors]] of $A$.
  
 This formula is called the Laplace expansion of $\det A$ along the first row, since $a_{11}$, $a_{12}$ and $a_{13}$ make up the first row of $A$. This formula is called the Laplace expansion of $\det A$ along the first row, since $a_{11}$, $a_{12}$ and $a_{13}$ make up the first row of $A$.
  
- 
-=== Example === 
- 
-\begin{align*}\det\mat{1&2&3\\7&8&9\\11&12&13} &= 1\cdot C_{11} + 2 C_{12} + 3 C_{13}\\ 
-&= 1 \cdot (+M_{11}) + 2 \cdot (-M_{12}) + 3 \cdot(+M_{13})\\ 
-&= M_{11}-2M_{12}+3M_{13}\\ 
-&= \det\mat{8&9\\12&13} -2\det\mat{7&9\\11&13} + 3\det\mat{7&8\\11&12}\\ 
-&= (8\cdot 13-9\cdot 12) -2(7\cdot 13-9\cdot 11)+3(7\cdot 12-8\cdot 11)\\ 
-&=-4 -2(-8)+3(-4)\\ 
-&=-4+16-12\\ 
-&=0.\end{align*} 
determinant_of_a_3x3_matrix.1425554220.txt.gz · Last modified: by rupert

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki