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The semester that Steve visited UH he taught a course on several
complex variables. Most examples of course focused on the 2
variable case and he always used the variables “zed” Z
and “ zee” Z.
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Overview

In this talk I want to show how some work with Stephen Power
and Roger Smith in the 1980’s on matrix completions leads
naturally to the concept of operator system quotients and provided
some of the earliest concrete examples.
Then I will outline how operator system quotients can simplify
some results in C*-algebras. In fact they have led to alternative
proofs of Kirchberg’s characterization of WEP C*-algebras, to a
new proof that the Cuntz algebras On are nuclear, and to Kavruk’s
construction of a finite dimensional operator system that is a
nuclearity detector.
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A matrix is paritally defined if only some of its entries are
specified and the remaining entries are viewed as variables. Here’s
an example of a partially defined matrix over C:

P =


1 1 ? −1
1 1 1 ?
? 1 1 1
−1 ? 1 1


In this case there are only two distinct fully defined principal
submatrices: (

1 1
1 1

) (
1 −1
−1 1

)
,

which are both positive semidefinite. Such a matrix is called
partially positive.
It is natural to wonder if given a partially positive matrix, can one
always choose values for the ?’s that makes the resulting matrix
positive? Such a matrix is called a positive completion.
The above matrix is an example of a partially positive matrix with
no positive completion.
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We only consider partially defined matrices such that pi ,j defined
implies that pj ,i is defined. In this case one can associate a graph
to the pattern of defined entries by saying that (i , j) is an edge iff
pi ,j is defined. For the above matrix the graph is the 4-cycle:

1→ 2→ 3→ 4→ 1.

Grone, Johnson, Sa, and Wolkowicz(1984) proved:
Theorem(GJSW): Fix a graph G on n vertices. Then every
partially positive matrix with pattern G has a positive completion if
and only if G is a chordal graph.
Later this theorem was extended to the case that the entries of the
partially defined matrix are all elements of B(H), with identical
statements.
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For a fixed graph G on n vertices we introduced the subspace

SG := span{Ei ,i ,Ei ,j : (i , j) is an edge } ⊆ Mn.

There is a one-to-one correspondence between linear maps
Φ : SG → B(H) and partially defined operator matrices with
pattern G by setting

P =
(
Φ(Ei ,j)

)
, ∀Ei ,j ∈ SG .
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Theorem(PPS): (1) A partially defined operator matrix with
pattern G has a positive completion iff the map ΦP : SG → B(H)
is completely positive.
(2) P is partially positive iff ΦP is positive on the convex hull of
the rank one positives in SG .
Combining with GJSW:
(3) A graph is chordal iff Mk(SG )+ is the convex hull of the its
rank one positives, for all k .
This last fact also yields a shorter proof of a result from graph
theory that says that a graph is chordal iff it has a perfect vertex
elimination scheme.
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Ordered Quotients

Another way to view a partially defined matrix P with pattern G is
as coset:

P → P + S⊥G ∈ Mn/S⊥G .

In this case P has a positive completion iff the coset has a positive
lifting of the quotient map.
Thus, it is natural to make the quotient Mn/S⊥G a matrix ordered
space via

(Pi ,j + S⊥G ) ≥ 0 ⇐⇒ (Pi ,j + Ki ,j) ≥ 0,∃Ki ,j ∈ S⊥G .

With this family of matrix cones Mn/S⊥G becomes an abstract
operator system in the sense of Choi-Effros.
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With these identifications, PPS (1) becomes a statement about
the dual space (SG )d . Namely,

SdG ' Mn/S⊥G ,

is a complete order isomorphism.
This leads one to wonder what operator systems can one obtain as
quotients of matrix algebras and as quotients of subspaces of
matrix algebras, i.e., subquotients of the matrices.
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Let Fn denote the free group on n generators, e = g1, ..., gn, let
C ∗(Fn−1) denote the full group C*-algebra and let

Sn = span{gig∗j : 1 ≤ i , j ≤ n} ⊆ C ∗(Fn−1).

Farenick-P proved that if D0 ⊆ Mn denotes the diagonal matrices
of trace 0, then

Mn/D0 ' Sn,

via the map Ei ,j →
gig

∗
j

n is a unital complete order isomorphism of
operator systems.
This was then used to give a simpler proof of Kirchberg’s result
that

C ∗(Fn)⊗min B(H) = C ∗(Fn)⊗max B(H),

and this lead to new characterisations of WEP C*-algebras.
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If we let v1, ..., vn denote a set of Cuntz isometries and let

Vn = span{1, v1, ..., vn, v∗1 , ..., v∗n} ⊆ On,

then Da Zhang proved that Vn is unitally completely order
isomorphic to the quotient of the operator system

Sn = {
(
a v∗

w bIn

)
: v ,w ∈ Cn} ⊆ Mn+1,

by the subspace

K = {
(
a 0
0 −aIn

)
: a ∈ C},

i.e. Sn/K ' Vn, later P-Zhang used this quotient representation to
give a new proof that On is nuclear.
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To see On nuclear, let A be a unital C*-algebra. Prove that the
fact that

Sn → Vn → 0,

is a complete quotient map implies

Sn ⊗τ A → Vn ⊗τ A → 0,

is a complete quotient map for τ = max(easy) and τ = min(hard,
but matrix theory). Next show

Sn ⊗min A = Sn ⊗max A.

Hence, by a diagram chase, basically the 5 lemma,

Vn ⊗min A = Vn ⊗max A.

Now using Choi’s theory of multiplicative domains, this implies,

On ⊗min A = On ⊗max A.
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Finally, these quotient techniques helped Kavruk to prove that if
we consider the 5 dimensional operator system

W3,2 = {(a1, ..., a6) ∈ `∞6 : a1 + a2 + a3 = a4 + a5 + a6}
with Wd

3,2 ' (`∞3 ⊕ `∞3 )/{(a, a, a,−a,−a,−a)},

then a C*-algebra A is nuclear iff

A⊗minW3,2 = A⊗max W3,2.

A 5 dimensional nuclearity detector!
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Thanks!
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