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Outline

1. Single variable shifts, unweighted and weighted, and their operator algebras
2. Shifts on directed graphs, unweighted and weighted, and their operator algebras

3. Commutants and bicommutants
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Single variable shifts
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Single variable unweighted shift and the Hardy algebra

> H= EZ(N()), o.n.b. (fn)nzo

0
>sEB(H),s=[”1’o L En > Enp

——WOT,

» S:=alg {I,S} = H>*(D), Hardy algebra
» No — S, k — S¥is a semigroup homorphism (5ks! = sk+/)

> Skgn = fn-i—k
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Single variable weighted shifts and their algebras

[Shields 1974, survey]

> H= fZ(No), o.n.b. (fn)nzo, and fix weights Ao, A1, A2, - >0

0
Xo 0
> S\ €B(H), S\ = [ "N o ] :&n > Ann

> Sy :=alg {1,S)}, “weighted Hardy algebra”
> No — Sy, k — SK is a semigroup homorphism (S§S% = s%*)

> K& = A(n, k)énpewhere An, k) = [ N

n<i<n-+k

» “Cocycle condition”: A(n, k1 + k2) = A(n + k1, k2)A(n, k1)
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Shifts on directed graphs
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Digraphs and paths
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Remark: P(G) is finite <= G is acyclic
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Unweighted shifts on digraphs and free semigroupoid algebras
> G: digraph, H = £*(P(G)), o.n.b. (&)vep(q)

» Forw,u € P(G), define partial isometries L,,, R, € B(H):

Lwigv'_> {ng WVEP(G)7 Ruigv'—> {gvu VUEP(G),

0 else 0 else

> Free semigroupoid operator algebras:

—T _WOT, — _WOT,

L:=alg {LL,|wePG)},  R:=alg {LR,|uecP@G))}

» '90s—: Davidson, Pitts, Popescu, Kribs, Katsoulis, Solel, Power, Kennedy, Kakariadis, ...
commutants, invariant subspaces, (hyper)reflexivity, wandering vectors, ...

Theorem (Kribs-Power, 2004) £ =2
L' =R and R' = L; hence, L" = L.
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Examples

1. 6= p x=e®

P(G) = {ek | k € No} 2 No,Le =Re = S, L = R = S, the Hardy algebra.
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Weighted left shifts on digraphs, and their algebras
> Left weight (LW): A : P(G) x P(G) — (0, 00) obeying the “left cocycle relation”
A(v, wawq) = A(wav, wa) (v, wq)

» Forw € P(G), define

Av,w)éwy wv € P(G),
0 else.

L/\,w &y {
> ||Lxwlla(H) = sup A(v, w). Could be infinite!
I A
> Say \is left bounded (LB) if ||Lxwllg(H) < oo forallw € P(G).

-—

» cocycle relation = semigroupoid homomorphism:LL)MW2W1 = L,\7W2LA,W
— S

a(wv)

> There is a unique o : P(G) — (0, c0) with aly) = 1so that A(v,w) = FOR
(Namely, a(v) := A(v,s(v)).)

J— AJ"‘
> For LBLW ), consider £y :=alg" {1, L, | w € P(G)}.
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Weighted right shifts on digraphs, and their algebras

> Right weight (RW): p : P(G) x P(G) — (0, 00) obeying the “right cocycle relation”
p(v, uruz) = p(vur,uz)p(v, ur)

» Foru € P(G), define

p(v,u)é wvu € P(G),
0 else.

Rpu: & {

> Say pis right bounded (RB) if ||Ru||a(+) < oo forallu € P(G).

» cocycle relation = semigroupoid homomorphism: R, u.u, = Ry uRp.u;

> There is a unique@): P(G) — (0, 00) with a|ygy = 150 that p(v,u) = ié((‘":')).
(Namely, a(v) := p(v,r(v)).)

te

_ ”
» For RBRW p, consider R, := alg""{I,R, | u e P(G)}.
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Commutants and bicommutants
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Commutants and bicommutants

Say a LW X and a RW p are companions if they come from the same map
a:P(G) — (0,00).

Theorem (KLP, 2017)

If Nisa LBLW and pis a RBRW, and ), p are companions, then L\ =R, and R}, = L.
In particular, if X is a LBLW with a RB companion, then LY = L.

» Taking A\ = p = 1recovers the theorem of [Kribs-Power 2004].

> If the companion of A is not RB, the situation is less clear...
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Example

o< P (0,2) D
5%
@ éé?@ @5 o6 O

<
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» o ~» p, RW, not RB
> L), =ClI so L) =B(H) # L.
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Congratulations on your retirement,
and thank you, Steve!
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