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Plan

• Revisit the Fourier binest algebra and the parabolic algebra studied

with S.C. Power in the 90’s from a new perspective.

• Revisit the space of operators which are ‘jointly harmonic’ with

respect to a family of complex measures on a group G.

• Represent both pairs of spaces inside suitable crossed products.
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Act One: The parabolic and Fourier binest algebras

The parabolic algebra Ap ⊆ B(L2
R) is

Ap := spanw*{Met
λs : eλ(x) = eitx , t ∈ R+, s ∈ R

+}

= spanw*{Mhλs : h ∈ H∞(R), s ∈ R
+}

where Mh ∈ B(L2
R) is the multiplication operator f 7→ hf and

(λsf )(x) = f (x − s) on L2(R).

These operators leave invariant both the Volterra nest Nv

(consisting of all projections onto the subspaces L2[t ,∞), t ∈ R), and

the analytic nest Na which consists of all projections onto the

subspaces etH
2(R), t ∈ R, (here et(x) := eitx ).

We called the union Nv ∪Na together with the trivial subspaces {0}
and L2(R), the Fourier binest Nfb.
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The parabolic and Fourier binest algebras are equal

So Ap leaves each P ∈ Nfb invariant. Hence, if ΘP : X 7→ P⊥XP, a

w*-continuous complete contraction on B(L2
R), then Ap ⊆ ker ΘP .

Thus considering the common kernel of the Θp’s,

⋂
{ker ΘP : P ∈ Nfb} = {T ∈ B(L2

R) : P⊥TP = 0 ∀P ∈ Nfb} := Afb

(the Fourier binest algebra) we have Ap ⊆ Afb.

In [?] we proved with Steve that Ap = Afb.

Idea of proof: Identify Hilbert-Schmidt operators in both algebras as

being linearly isomorphic to the tensor product H2(R)⊗ H2(R) (R.

Levene: H2(R)⊗ L2(R+)) and there is an approximate identity of such

Hilbert-Schmidt operators.
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The parabolic and Fourier binest algebras are equal!
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Act Two:

Harmonic functions, Harmonic operators, and All That

Let µ ∈ M(G) be a probability measure on a loc. compact group G.

• Say φ : G → C is a µ-harmonic function (φ ∈ H(µ)) if φ is a fixed

point of the map Pµ given by

(Pµφ)(s) =

∫

G

φ(st)dµ(t).

• Quantisation: Say T ∈ B(L2(G)) is a µ-harmonic operator if

∫

G

ρtTρ−1
t dµ(t) = T . Write T ∈ H̃(µ) .

(ρ: right-regular repr. of G)
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Harmonic functions, Harmonic operators, and All That

So H̃(µ) is the fixed point set of the map

Θ(µ) : B(L2(G)) → B(L2(G)) : T →

∫

G

ρtTρ−1
t dµ(t)

which is weak-* continuous (completely contractive)

and extends Pµ.
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Harmonic functions, Harmonic operators

Clearly multiplication operators Mφ by µ-harmonic functions are in

H̃(µ) and so are left translation operators λs, s ∈ G.

Thus, if

Bim(H(µ)) := spanw*{Mφλs : φ ∈ H(µ), s ∈ G} ⊆ B(L2G)

(the weak* closed vN(G)-bimodule generated by H(µ)), we have

Bim(H(µ)) ⊆ H̃(µ) .

More generally: consider jointly harmonic functions (resp. operators)

i.e. harmonic under a family Λ of complex measures, we have

Bim(H(Λ)) ⊆ H̃(Λ) .
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Harmonic functions generate Harmonic operators

under the AP

As a consequence of a more general result [see Act Three below], we

have

Theorem

For any Λ ⊆ M(G),
Bim(H(Λ)) = H̃(Λ)

provided G has the Approximation Property AP of Haagerup-Kraus.

(AP: existence of a very weak form of approximate identity for the cb

multipliers of the Fourier algebra of G.)
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Harmonic functions generate Harmonic operators

under the AP

This was first proved in case G is abelian, or compact, or weakly

amenable discrete with M. Anoussis and I.G. Todorov [?]. Then

generalised as above by J. Crann and M. Neufang [?].

• When Λ = {µ} for a probability measure, the result holds for any G

(Izumi, Jaworski-Neufang). Reason: H(µ) is linearly and covariantly

completely isometrically isomorphic to a Von Neumann algebra (the

‘Poisson boundary’).

• For general Λ, the result generalises the idea of the

‘non-commutative Poisson boundary’.

• Not known if AP necessary.

To view both under a different perspective:  
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Act Three: The operator space crossed products

Let V ⊆ B(H) be a w*-closed operator space (no algebra structure), with

predual V∗ and let s 7→ αs be an action of G on V by weak-* continuous

complete isometries.

To represent both G and V simultaneously and covariantly:

Define, for each v ∈ V, an element πα(v) ∈ V⊗̄L∞(G) by duality:

〈πα(v), ω ⊗ h〉 :=

∫

G

〈α−1
s (v), ω〉h(s)ds, ω ∈ V∗, h ∈ L1(G) .

Considering L∞(G) ⊆ B(L2G) we have a map

πα : V → V⊗̄L∞(G) ⊆ V⊗̄B(L2G) ⊆ B(H ⊗ L2G) .

Also let λ̃ : G → B(H ⊗ L2G) : s 7→ λ̃s := IdH ⊗ λs .

Covariance:

πα(αs(v)) = λ̃sπα(v)λ̃
−1
s .
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The spatial crossed product

πα : V → V⊗̄B(L2G) ⊆ B(H ⊗ L2G)

λ̃ : G → B(H ⊗ L2G)

πα(αs(v)) = λ̃sπα(v)λ̃
−1
s

The spatial crossed product V ⋊α G is defined to be the

vN(G)-bimodule generated in V⊗̄B(L2G) by πα(V): it is the weak*

closed space

V ⋊α G := spanw*{πα(v)λ̃s, v ∈ V, s ∈ G} ⊆ V⊗̄B(L2G).

It is not hard to see that V ⋊α G consists of fixed points for the G-action

s ∈ G 7→ αs ⊗ Adρs : G y V⊗B(L2G)
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The Fubini crossed product

It is not hard to see that V ⋊α G consists of fixed points for the G-action

s ∈ G 7→ αs ⊗ Adρs : G y V⊗B(L2G)

on the tensor product V⊗B(L2G), where ρ is the right regular

representation of G.

The (apriori larger) space of fixed points of α⊗ Adρ,

{y ∈ V⊗B(L2G) : (αs ⊗ Adρs)(y) = y ∀s ∈ G} := V ⋊
F
α G

is called the Fubini crossed product of V by α.Thus

V ⋊α G ⊆ V ⋊
F
α G .
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Comparing the Crossed products

V ⋊α G ⊆ V ⋊
F
α G .

In special cases, for example when V is a von Neumann algebra, the

equality V ⋊α G = V ⋊
F
α G holds for all G, but not in general.

Crann - Neufang [?] proved that we have coincidence for all V when G

has the AP.

Theorem (D. Andreou, [?])

The spatial and Fubini crossed products coincide for all dual operator

spaces ⇐⇒ G has the AP.
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Bimodules and Crossed products

Now specialise to the case of the action G
αG
y L∞(G) by left translation.

Then both crossed products can be represented on L2(G):

Proposition (D. Andreou)

For any translation invariant weak* closed space V ⊆ L∞(G),

V ⋊αG
G

Ψ
≃ Bim(V) and V ⋊

F
αG

G
Ψ
≃ ker Θ(V⊥).

where Ψ : B(L2G) → B(L2(G × G)) is an isometric normal *-morphism.

Here

ker Θ(V⊥) :=
⋂

{T ∈ B(L2G) :

∫

G

ρtTρ−1
t f (t)dt = 0 ∀f ∈ V⊥} .

Note Ψ : λs → 1 ⊗ λS and Ψ : Mf → MαG(f ) where αG(f )(s, t) = f (ts).
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Resolution: Back to the Examples

• In particular, for the jointly Λ-harmonic case, Λ ⊆ M(G), we get

H(Λ)⋊αG
G

Ψ
≃ Bim(H(Λ)) and H(Λ)⋊F

αG
G

Ψ
≃ ker Θ(H(Λ)⊥) .

But ker Θ(H(Λ)⊥) = H̃(Λ).
So we obtain the equality

Bim(H(Λ)) = ker Θ(H(Λ)⊥)

under the AP.
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Resolution: Back to the Examples

• Also, for the holomorphic case, V = H∞(R),

H∞(R)⋊αR
R

Ψ
≃ Bim(H∞(R)) and H∞(R)⋊F

αR
R

Ψ
≃ ker Θ(H∞(R)⊥)

(which are of course equal). But

Bim(H∞(R)) = spanw*{Mhλs : h ∈ H∞(R), s ∈ R}

so, restricting to s ∈ R
+,

Ap = spanw*{Mhλs : h ∈ H∞(R), s ∈ R
+}

Ψ
≃ H∞(R)⋊αR

R
+

where the ‘semi-crossed product’ is defined to be the weak* closed

subspace of H∞(R)⋊αR
R generated by πα(h)λ̃s with h ∈ H∞(R) and

s ∈ R
+.

H∞(R)⋊αR
R
+ := spanw*{πα(h)λ̃s : h ∈ H∞(R), s ∈ R

+}.
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The Fourier binest algebra is a semi-crossed product

Thus, the equality Ap = Afb justifies the point of view that the Fourier

binest algebra is (isomorphic to) a ‘continuous’ semi-crossed product

of H∞(R), by an action of R+.

Afb
Ψ
≃ H∞(R)⋊αR

R
+.

This is implicit (in a discrete way) in some ideas of S.C. Power and in

some recent results of E. Kastis.
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Στην Υγειά σου Steve! За здоровье!
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