

In Athens, 2017

From Fourier binests to Harmonic operators, via crossed products

Aristides Katavolos

National and Kapodistrian University of Athens, Greece

IWOTA Lancaster, August 2021

Plan

- Revisit the Fourier binest algebra and the parabolic algebra studied with S.C. Power in the 90's from a new perspective.
- Revisit the space of operators which are 'jointly harmonic' with respect to a family of complex measures on a group G .
- Represent both pairs of spaces inside suitable crossed products.

Act One: The parabolic and Fourier binest algebras

The *parabolic algebra* $\mathcal{A}_p \subseteq \mathcal{B}(L^2\mathbb{R})$ is

$$\begin{aligned}\mathcal{A}_p &:= \overline{\text{span}}^{\text{w}^*} \{M_{e_t} \lambda_s : e_\lambda(x) = e^{itx}, t \in \mathbb{R}_+, s \in \mathbb{R}^+\} \\ &= \overline{\text{span}}^{\text{w}^*} \{M_h \lambda_s : h \in H^\infty(\mathbb{R}), s \in \mathbb{R}^+\}\end{aligned}$$

where $M_h \in \mathcal{B}(L^2\mathbb{R})$ is the multiplication operator $f \mapsto hf$ and $(\lambda_s f)(x) = f(x - s)$ on $L^2(\mathbb{R})$.

These operators leave invariant both the *Volterra nest* \mathcal{N}_v (consisting of all projections onto the subspaces $L^2[t, \infty)$, $t \in \mathbb{R}$), and the *analytic nest* \mathcal{N}_a which consists of all projections onto the subspaces $e_t H^2(\mathbb{R})$, $t \in \mathbb{R}$, (here $e_t(x) := e^{itx}$).

We called the union $\mathcal{N}_v \cup \mathcal{N}_a$ together with the trivial subspaces $\{0\}$ and $L^2(\mathbb{R})$, the *Fourier binest* \mathcal{N}_{fb} .

The parabolic and Fourier binest algebras are equal

So \mathcal{A}_p leaves each $P \in \mathcal{N}_{fb}$ invariant. Hence, if $\Theta_P : X \mapsto P^\perp X P$, a w^* -continuous complete contraction on $\mathcal{B}(L^2\mathbb{R})$, then $\mathcal{A}_p \subseteq \ker \Theta_P$. Thus considering the **common kernel** of the Θ_p 's,

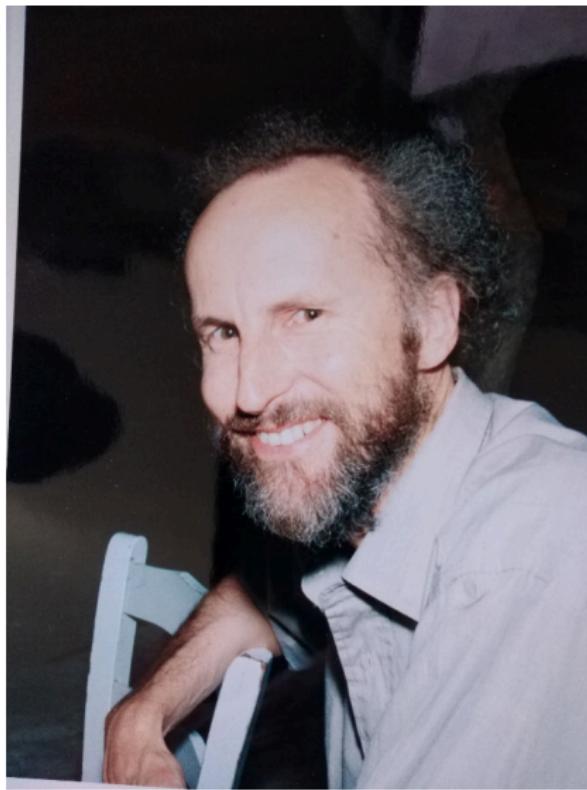
$$\bigcap \{\ker \Theta_P : P \in \mathcal{N}_{fb}\} = \{T \in \mathcal{B}(L^2\mathbb{R}) : P^\perp T P = 0 \ \forall P \in \mathcal{N}_{fb}\} := \mathcal{A}_{fb}$$

(the **Fourier binest algebra**) we have $\mathcal{A}_p \subseteq \mathcal{A}_{fb}$.

In [?] we proved with Steve that $\mathcal{A}_p = \mathcal{A}_{fb}$.

Idea of proof: Identify Hilbert-Schmidt operators in both algebras as being linearly isomorphic to the tensor product $H^2(\mathbb{R}) \otimes H^2(\mathbb{R})$ (R. Levene: $H^2(\mathbb{R}) \otimes L^2(\mathbb{R}^+)$) and there is an approximate identity of such Hilbert-Schmidt operators.

The parabolic and Fourier binest algebras are equal!



Act Two:

Harmonic functions, Harmonic operators, and All That

Let $\mu \in M(G)$ be a probability measure on a loc. compact group G .

- Say $\phi : G \rightarrow \mathbb{C}$ is a μ -harmonic function ($\phi \in \mathcal{H}(\mu)$) if ϕ is a fixed point of the map P_μ given by

$$(P_\mu \phi)(s) = \int_G \phi(st) d\mu(t).$$

- Quantisation: Say $T \in \mathcal{B}(L^2(G))$ is a μ -harmonic operator if

$$\int_G \rho_t T \rho_t^{-1} d\mu(t) = T. \quad \text{Write } T \in \tilde{\mathcal{H}}(\mu).$$

(ρ : right-regular repr. of G)

Harmonic functions, Harmonic operators, and All That

So $\tilde{\mathcal{H}}(\mu)$ is the **fixed point set** of the map

$$\Theta(\mu) : \mathcal{B}(L^2(G)) \rightarrow \mathcal{B}(L^2(G)) : T \mapsto \int_G \rho_t T \rho_t^{-1} d\mu(t)$$

which is weak-* continuous (completely contractive)
and extends P_μ .

Harmonic functions, Harmonic operators

Clearly multiplication operators M_ϕ by μ -harmonic functions are in $\widetilde{\mathcal{H}}(\mu)$ and so are left translation operators λ_s , $s \in G$.
Thus, if

$$\text{Bim}(\mathcal{H}(\mu)) := \overline{\text{span}}^{w^*} \{M_\phi \lambda_s : \phi \in \mathcal{H}(\mu), s \in G\} \subseteq \mathcal{B}(L^2 G)$$

(the weak* closed $vN(G)$ -bimodule generated by $\mathcal{H}(\mu)$), we have

$$\text{Bim}(\mathcal{H}(\mu)) \subseteq \widetilde{\mathcal{H}}(\mu).$$

More generally: consider **jointly harmonic** functions (resp. operators)
i.e. harmonic under **a family Λ of complex measures**, we have

$$\text{Bim}(\mathcal{H}(\Lambda)) \subseteq \widetilde{\mathcal{H}}(\Lambda).$$

Harmonic functions generate Harmonic operators under the AP

As a consequence of a more general result [see Act Three below], we have

Theorem

For any $\Lambda \subseteq M(G)$, $\text{Bim}(\mathcal{H}(\Lambda)) = \tilde{\mathcal{H}}(\Lambda)$

provided G has the *Approximation Property AP* of Haagerup-Kraus.

(AP: existence of a very weak form of approximate identity for the cb multipliers of the Fourier algebra of G .)

Harmonic functions generate Harmonic operators under the AP

This was first proved in case G is abelian, or compact, or weakly amenable discrete with M. Anoussis and I.G. Todorov [?]. Then generalised as above by J. Crann and M. Neufang [?].

- When $\Lambda = \{\mu\}$ for a probability measure, the result holds for any G (Izumi, Jaworski-Neufang). Reason: $\mathcal{H}(\mu)$ is linearly and covariantly completely isometrically isomorphic to a Von Neumann algebra (the ‘Poisson boundary’).
- For general Λ , the result generalises the idea of the ‘non-commutative Poisson boundary’.
- Not known if AP necessary.

To view both under a different perspective: \rightsquigarrow

Act Three: The operator space crossed products

Let $\mathcal{V} \subseteq \mathcal{B}(H)$ be a w^* -closed operator space (no algebra structure), with predual \mathcal{V}_* and let $s \mapsto \alpha_s$ be an action of G on \mathcal{V} by weak-* continuous complete isometries.

To represent both G and \mathcal{V} simultaneously and covariantly:

Define, for each $v \in \mathcal{V}$, an element $\pi_\alpha(v) \in \mathcal{V} \bar{\otimes} L^\infty(G)$ by duality:

$$\langle \pi_\alpha(v), \omega \otimes h \rangle := \int_G \langle \alpha_s^{-1}(v), \omega \rangle h(s) ds, \quad \omega \in \mathcal{V}_*, h \in L^1(G).$$

Considering $L^\infty(G) \subseteq \mathcal{B}(L^2 G)$ we have a map

$$\pi_\alpha : \mathcal{V} \rightarrow \mathcal{V} \bar{\otimes} L^\infty(G) \subseteq \mathcal{V} \bar{\otimes} \mathcal{B}(L^2 G) \subseteq \mathcal{B}(H \otimes L^2 G).$$

Also let $\tilde{\lambda} : G \rightarrow \mathcal{B}(H \otimes L^2 G) : s \mapsto \tilde{\lambda}_s := \text{Id}_H \otimes \lambda_s$.

Covariance:

$$\pi_\alpha(\alpha_s(v)) = \tilde{\lambda}_s \pi_\alpha(v) \tilde{\lambda}_s^{-1}.$$

The spatial crossed product

$$\pi_\alpha : \mathcal{V} \rightarrow \mathcal{V} \bar{\otimes} \mathcal{B}(L^2 G) \subseteq \mathcal{B}(H \otimes L^2 G)$$

$$\tilde{\lambda} : G \rightarrow \mathcal{B}(H \otimes L^2 G)$$

$$\pi_\alpha(\alpha_s(v)) = \tilde{\lambda}_s \pi_\alpha(v) \tilde{\lambda}_s^{-1}$$

The *spatial crossed product* $\mathcal{V} \rtimes_\alpha G$ is defined to be the $vN(G)$ -bimodule generated in $\mathcal{V} \bar{\otimes} \mathcal{B}(L^2 G)$ by $\pi_\alpha(\mathcal{V})$: it is the weak* closed space

$$\mathcal{V} \rtimes_\alpha G := \overline{\text{span}}^{\text{w}^*} \{ \pi_\alpha(v) \tilde{\lambda}_s, \ v \in \mathcal{V}, s \in G \} \subseteq \mathcal{V} \bar{\otimes} \mathcal{B}(L^2 G).$$

It is not hard to see that $\mathcal{V} \rtimes_\alpha G$ consists of fixed points for the G -action

$$s \in G \mapsto \alpha_s \otimes \text{Ad} \rho_s : \quad G \curvearrowright \mathcal{V} \bar{\otimes} \mathcal{B}(L^2 G)$$

The Fubini crossed product

It is not hard to see that $\mathcal{V} \rtimes_{\alpha} G$ consists of fixed points for the G -action

$$s \in G \mapsto \alpha_s \otimes \text{Ad}\rho_s : \quad G \curvearrowright \mathcal{V} \overline{\otimes} \mathcal{B}(L^2 G)$$

on the tensor product $\mathcal{V} \overline{\otimes} \mathcal{B}(L^2 G)$, where ρ is the right regular representation of G .

The (apriori larger) space of fixed points of $\alpha \otimes \text{Ad}\rho$,

$$\{y \in \mathcal{V} \overline{\otimes} \mathcal{B}(L^2 G) : (\alpha_s \otimes \text{Ad}\rho_s)(y) = y \ \forall s \in G\} := \mathcal{V} \rtimes_{\alpha}^{\mathcal{F}} G$$

is called the **Fubini crossed product** of \mathcal{V} by α . Thus

$$\mathcal{V} \rtimes_{\alpha} G \subseteq \mathcal{V} \rtimes_{\alpha}^{\mathcal{F}} G.$$

Comparing the Crossed products

$$\mathcal{V} \rtimes_{\alpha} G \subseteq \mathcal{V} \rtimes_{\alpha}^F G.$$

In special cases, for example when \mathcal{V} is a von Neumann algebra, the equality $\mathcal{V} \rtimes_{\alpha} G = \mathcal{V} \rtimes_{\alpha}^F G$ holds for all G , but not in general.

Crann - Neufang [?] proved that we have coincidence for all \mathcal{V} when G has the AP.

Theorem (D. Andreou, [?])

The spatial and Fubini crossed products coincide for all dual operator spaces $\iff G$ has the AP.

Bimodules and Crossed products

Now specialise to the case of the action $G \curvearrowright L^\infty(G)$ by left translation. Then both crossed products can be represented on $L^2(G)$:

Proposition (D. Andreou)

For any translation invariant weak* closed space $\mathcal{V} \subseteq L^\infty(G)$,

$$\mathcal{V} \rtimes_{\alpha_G} G \stackrel{\Psi}{\simeq} \text{Bim}(\mathcal{V}) \quad \text{and} \quad \mathcal{V} \rtimes_{\alpha_G}^F G \stackrel{\Psi}{\simeq} \ker \Theta(\mathcal{V}_\perp).$$

where $\Psi : \mathcal{B}(L^2 G) \rightarrow \mathcal{B}(L^2(G \times G))$ is an isometric normal *-morphism.

Here

$$\ker \Theta(\mathcal{V}_\perp) := \bigcap \{ T \in \mathcal{B}(L^2 G) : \int_G \rho_t T \rho_t^{-1} f(t) dt = 0 \ \forall f \in \mathcal{V}_\perp \}.$$

Note $\Psi : \lambda_s \rightarrow 1 \otimes \lambda_s$ and $\Psi : M_f \rightarrow M_{\alpha_G(f)}$ where $\alpha_G(f)(s, t) = f(ts)$.

Resolution: Back to the Examples

- In particular, for the jointly Λ -harmonic case, $\Lambda \subseteq M(G)$, we get

$$\mathcal{H}(\Lambda) \rtimes_{\alpha_G} G \stackrel{\Psi}{\simeq} \text{Bim}(\mathcal{H}(\Lambda)) \quad \text{and} \quad \mathcal{H}(\Lambda) \rtimes_{\alpha_G}^F G \stackrel{\Psi}{\simeq} \ker \Theta(\mathcal{H}(\Lambda)_{\perp}).$$

But $\ker \Theta(\mathcal{H}(\Lambda)_{\perp}) = \tilde{\mathcal{H}}(\Lambda)$.

So we obtain the equality

$$\text{Bim}(\mathcal{H}(\Lambda)) = \ker \Theta(\mathcal{H}(\Lambda)_{\perp})$$

under the AP.

Resolution: Back to the Examples

- Also, for the holomorphic case, $\mathcal{V} = H^\infty(\mathbb{R})$,

$$H^\infty(\mathbb{R}) \rtimes_{\alpha_{\mathbb{R}}} \mathbb{R} \xrightarrow{\Psi} \text{Bim}(H^\infty(\mathbb{R})) \quad \text{and} \quad H^\infty(\mathbb{R}) \rtimes_{\alpha_{\mathbb{R}}}^F \mathbb{R} \xrightarrow{\Psi} \ker \Theta(H^\infty(\mathbb{R})_\perp)$$

(which are of course equal). But

$$\text{Bim}(H^\infty(\mathbb{R})) = \overline{\text{span}}^{w^*} \{M_h \lambda_s : h \in H^\infty(\mathbb{R}), s \in \mathbb{R}\}$$

so, restricting to $s \in \mathbb{R}^+$,

$$\mathcal{A}_p = \overline{\text{span}}^{w^*} \{M_h \lambda_s : h \in H^\infty(\mathbb{R}), s \in \mathbb{R}^+\} \xrightarrow{\Psi} H^\infty(\mathbb{R}) \rtimes_{\alpha_{\mathbb{R}}} \mathbb{R}^+$$

where the 'semi-crossed product' is defined to be the weak* closed subspace of $H^\infty(\mathbb{R}) \rtimes_{\alpha_{\mathbb{R}}} \mathbb{R}$ generated by $\pi_\alpha(h) \tilde{\lambda}_s$ with $h \in H^\infty(\mathbb{R})$ and $s \in \mathbb{R}^+$.

$$H^\infty(\mathbb{R}) \rtimes_{\alpha_{\mathbb{R}}} \mathbb{R}^+ := \overline{\text{span}}^{w^*} \{\pi_\alpha(h) \tilde{\lambda}_s : h \in H^\infty(\mathbb{R}), s \in \mathbb{R}^+\}.$$

The Fourier binest algebra is a semi-crossed product

Thus, the equality $\mathcal{A}_p = \mathcal{A}_{fb}$ justifies the point of view that the Fourier binest algebra is (isomorphic to) a ‘continuous’ semi-crossed product of $H^\infty(\mathbb{R})$, by an action of \mathbb{R}^+ .

$$\mathcal{A}_{fb} \xrightarrow{\Psi} H^\infty(\mathbb{R}) \rtimes_{\alpha_{\mathbb{R}}} \mathbb{R}^+.$$

This is implicit (in a discrete way) in some ideas of S.C. Power and in some recent results of E. Kastis.

References

- D. Andreou, *Crossed products of dual operator spaces and a characterization of groups with the AP*, arXiv:2004.07169.
- M. Anoussis, A. Katavolos, I. G. Todorov, *Bimodules over $VN(G)$, harmonic operators and the non-commutative Poisson boundary*, Studia Mathematica **249** (2019), 193-213.
- A. Katavolos, S. C. Power, *The Fourier binest algebra*, Math. Proc. Cambridge Phil. Soc. **122** (3) (1997), 525–539.
- J. Crann, M. Neufang, *A non-commutative Fejér theorem for crossed products, the approximation property, and applications*, arXiv:1901.08700. International Mathematics Research Notices. doi: 10.1093/imrn/rnaa221 (2020).

Στην Υγειά σου Steve! За здоровье!