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X finite dimensional real normed linear space.

G = (V,E) simple undirected graph.

q ∈ XV , q = (qv)v∈V .

The pair (G, q) is called a bar-joint framework in X.

G q
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Standard question: Is (G, q) rigid or flexible in X?

Usual answer: Depends on G, X and q.

Typical theorem: Graphs of type A are rigid in spaces of type B

for all placements of type C.
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Standard question: Is (G, q) rigid or flexible in X?

Usual answer: Depends on G, X and q.

Typical theorem: Graphs of type A are rigid in spaces of type B

for all placements of type C.

Target theorem: A graph is rigid in a given space for almost all

placements iff it satisfies the following purely combinatorial (and

easily verifiable) conditions...
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An infinitesimal flex of (G, q) is a vector u ∈ XV , u = (uv)v∈V ,

such that for every edge vw ∈ E,

lim
t→0

1

t
(‖qv + tuv − (qw + tuw)‖ − ‖qv − qw‖) = 0.
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An infinitesimal flex of (G, q) is a vector u ∈ XV , u = (uv)v∈V ,

such that for every edge vw ∈ E,

lim
t→0

1

t
(‖qv + tuv − (qw + tuw)‖ − ‖qv − qw‖) = 0.

F(G, q) is the linear space of infinitesimal flexes of (G, q).

An infinitesimal flex u ∈ F(G, q) is trivial if there exists η in the

Lie algebra of Isom(X) such that

uv = η(qv), ∀ v ∈ V.
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An infinitesimal flex of (G, q) is a vector u ∈ XV , u = (uv)v∈V ,

such that for every edge vw ∈ E,

lim
t→0

1

t
(‖qv + tuv − (qw + tuw)‖ − ‖qv − qw‖) = 0.

F(G, q) is the linear space of infinitesimal flexes of (G, q).

An infinitesimal flex u ∈ F(G, q) is trivial if there exists η in the

Lie algebra of Isom(X) such that

uv = η(qv), ∀ v ∈ V.

T (G, q) is the linear space of trivial infinitesimal flexes of (G, q).
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(G, q) is (infinitesimally) rigid if F(G, q) = T (G, q).
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(G, q) is (infinitesimally) rigid if F(G, q) = T (G, q).

Otherwise (G, q) is (infinitesimally) flexible.

(G, q) is minimally rigid if it is rigid and (G\e, q) is flexible for

every edge e ∈ E.
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(G, q) is (infinitesimally) rigid if F(G, q) = T (G, q).

Otherwise (G, q) is (infinitesimally) flexible.

(G, q) is minimally rigid if it is rigid and (G\e, q) is flexible for

every edge e ∈ E.

G is (minimally) rigid in X if there exists q ∈ XV such that (G, q)
is (minimally) rigid in X.
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(G, q) is (infinitesimally) rigid if F(G, q) = T (G, q).

Otherwise (G, q) is (infinitesimally) flexible.

(G, q) is minimally rigid if it is rigid and (G\e, q) is flexible for

every edge e ∈ E.

G is (minimally) rigid in X if there exists q ∈ XV such that (G, q)
is (minimally) rigid in X.

Theorem (Folklore)

G is minimally rigid in R iff it is a tree.
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G = (V,E) is (k, l)-sparse if |E′| ≤ k|V ′| − l for “all” subgraphs

(V ′, E′).
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G = (V,E) is (k, l)-sparse if |E′| ≤ k|V ′| − l for “all” subgraphs

(V ′, E′).

G is (k, l)-tight if it is (k, l)-sparse and |E| = k|V | − l.

Theorem (Maxwell 1864)

If G is minimally rigid in ℓd2 then G is
(

d,
d(d+1)

2

)

-tight.
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G = (V,E) is (k, l)-sparse if |E′| ≤ k|V ′| − l for “all” subgraphs

(V ′, E′).

G is (k, l)-tight if it is (k, l)-sparse and |E| = k|V | − l.

Theorem (Maxwell 1864)

If G is minimally rigid in ℓd2 then G is
(

d,
d(d+1)

2

)

-tight.

Theorem (Geiringer 1927, Laman 1970)

G is minimally rigid in ℓ22 iff it is (2, 3)-tight.
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G = (V,E) is (k, l)-sparse if |E′| ≤ k|V ′| − l for “all” subgraphs

(V ′, E′).

G is (k, l)-tight if it is (k, l)-sparse and |E| = k|V | − l.

Theorem (Maxwell 1864)

If G is minimally rigid in ℓd2 then G is
(

d,
d(d+1)

2

)

-tight.

Theorem (Geiringer 1927, Laman 1970)

G is minimally rigid in ℓ22 iff it is (2, 3)-tight.

Longstanding open problem: Find a combinatorial

characterisation of rigidity in ℓd2, where d ≥ 3.
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Theorem (Gluck 1975, Whiteley 1990)

Triangulations of the 2-sphere are minimally rigid in ℓ32.
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Theorem (Gluck 1975, Whiteley 1990)

Triangulations of the 2-sphere are minimally rigid in ℓ32.

Theorem (Fogelsanger 1988)

Triangulations of compact surfaces without boundary are rigid

in ℓ32.
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Theorem (Gluck 1975, Whiteley 1990)

Triangulations of the 2-sphere are minimally rigid in ℓ32.

Theorem (Fogelsanger 1988)

Triangulations of compact surfaces without boundary are rigid

in ℓ32.

Theorem (Cruickshank, K., Power 2019)

Triangulations of a torus with a single hole are minimally rigid in

ℓ32 iff they are (3, 6)-tight.
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Workshop on Geometric Rigidity, Lancaster 2015
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The rigidity matrix R(G, q) takes the form,









v w

...
...

vw 0 · · · 0 ϕ(v, w) 0 · · · 0 −ϕ(v, w) 0 · · ·
...

...









where ϕ(v, w) is the (unique) support functional for qv − qw ∈ X.
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The rigidity matrix R(G, q) takes the form,









v w

...
...

vw 0 · · · 0 ϕ(v, w) 0 · · · 0 −ϕ(v, w) 0 · · ·
...

...









where ϕ(v, w) is the (unique) support functional for qv − qw ∈ X.

◮ F(G, q) = kerR(G, q).

Derek Kitson Mary Immaculate College

Braced sphere triangulations and rigidity



Introduction to rigidity Survey of recent work in normed spaces A new result for doubly braced triangulations

The rigidity matrix R(G, q) takes the form,









v w

...
...

vw 0 · · · 0 ϕ(v, w) 0 · · · 0 −ϕ(v, w) 0 · · ·
...

...









where ϕ(v, w) is the (unique) support functional for qv − qw ∈ X.

◮ F(G, q) = kerR(G, q).

◮ T (G, q) depends on Isom(X).
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Example

Let X = ℓ22 and G = K3.

Write qv = (qxv , q
y
v) for all v ∈ V .
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Example

Let X = ℓ22 and G = K3.

Write qv = (qxv , q
y
v) for all v ∈ V .

R(G, q) is a |E| × 2|V |-matrix:













(v1;x) (v1;y) (v2;x) (v2;y) (v3;x) (v3;y)

v1v2 qxv1 − qxv2 qyv1 − qyv2 qxv2 − qxv1 qyv2 − qyv1 0 0

v1v3 qxv1 − qxv3 qyv1 − qyv3 0 0 qxv3 − qxv1 qyv3 − qyv1

v2v3 0 0 qxv2 − qxv3 qyv2 − qyv3 qxv3 − qxv2 qyv3 − qyv2












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Theorem (K., Power 2014)

Let p ∈ [1,∞], p 6= 2. Then G is minimally rigid in ℓ2p iff it is

(2, 2)-tight.
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Theorem (K., Power 2014)

Let p ∈ [1,∞], p 6= 2. Then G is minimally rigid in ℓ2p iff it is

(2, 2)-tight.

Conjecture

Let p ∈ [1,∞], p 6= 2. Then G is minimally rigid in ℓdp iff it is

(d, d)-tight.
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Theorem (K., Power 2014)

Let p ∈ [1,∞], p 6= 2. Then G is minimally rigid in ℓ2p iff it is

(2, 2)-tight.

Conjecture

Let p ∈ [1,∞], p 6= 2. Then G is minimally rigid in ℓdp iff it is

(d, d)-tight.

Theorem (Dewar, K., Nixon 2021)

Triangulations of the projective plane are minimally rigid in ℓ3p,

for all p ∈ (1,∞), p 6= 2.
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Theorem (K. 2015)

Let X be a normed plane with a polygonal unit ball. Then G is

minimally rigid in X iff it is (2, 2)-tight.
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Theorem (K. 2015)

Let X be a normed plane with a polygonal unit ball. Then G is

minimally rigid in X iff it is (2, 2)-tight.

Theorem (Dewar 2019)

Let X be a non-Euclidean normed plane. Then G is minimally

rigid in X iff it is (2, 2)-tight.
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Theorem (K. 2015)

Let X be a normed plane with a polygonal unit ball. Then G is

minimally rigid in X iff it is (2, 2)-tight.

Theorem (Dewar 2019)

Let X be a non-Euclidean normed plane. Then G is minimally

rigid in X iff it is (2, 2)-tight.

Theorem (K., Levene 2020)

Let p ∈ [1,∞], p 6= 2.

(i) If G is minimally rigid in (Mn(R), ‖ · ‖cp) then it is

(n2, 2n2 − n)-tight.

(ii) If G is minimally rigid in (Hn(R), ‖ · ‖cp) then it is

(12n(n+ 1), n2)-tight.
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Geometric constraint systems, Lancaster 2019
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Joint work with James Cruickshank (NUI Galway), Eleftherios

Kastis (Lancaster) and Bernd Schulze (Lancaster).

See our recent preprint:

Cruickshank, Kastis, Kitson, Schulze. Braced triangulations and rigidity.

arxiv.org/abs/2107.03829
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A braced sphere triangulation G = (P,B) is a simple graph

obtained by adjoining a set B of additional edges to a sphere

triangulation P .
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obtained by adjoining a set B of additional edges to a sphere

triangulation P .

An edge e of P is contractible in G if it is contractible in P and

does not belong to any 3-cycle that contains a brace.

A braced sphere triangulation is irreducible if it has no

contractible edges.
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A braced sphere triangulation G = (P,B) is a simple graph

obtained by adjoining a set B of additional edges to a sphere

triangulation P .

An edge e of P is contractible in G if it is contractible in P and

does not belong to any 3-cycle that contains a brace.

A braced sphere triangulation is irreducible if it has no

contractible edges.

Theorem
An irreducible braced sphere triangulation with b braces has at

most 11b− 4 vertices.
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Theorem
There is exactly one irreducible unibraced sphere triangulation.
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Theorem
There are exactly five irreducible doubly braced sphere

triangulations.
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For p ∈ (1,∞) define the mixed norm on R
3 by,

‖(x, y, z)‖2,p = ((x2 + y2)
p

2 + |z|p)
1
p .
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For p ∈ (1,∞) define the mixed norm on R
3 by,

‖(x, y, z)‖2,p = ((x2 + y2)
p

2 + |z|p)
1
p .

Theorem
Doubly braced triangulations are minimally rigid in (R3, ‖ · ‖2,p),
for all p ∈ (1,∞), p 6= 2.
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For p ∈ (1,∞) define the mixed norm on R
3 by,

‖(x, y, z)‖2,p = ((x2 + y2)
p

2 + |z|p)
1
p .

Theorem
Doubly braced triangulations are minimally rigid in (R3, ‖ · ‖2,p),
for all p ∈ (1,∞), p 6= 2.

Conjecture

Doubly braced triangulations are minimally rigid in

(H2(R), ‖ · ‖cp), for all p ∈ [1,∞], p 6= 2.
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Proof.
Every doubly braced sphere triangulation can be constructed

from one of 5 irreducibles by “vertex splitting”.
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Proof.
Every doubly braced sphere triangulation can be constructed

from one of 5 irreducibles by “vertex splitting”.

The 5 irreducibles are minimally rigid in (R3, ‖ · ‖2,p).
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Proof.
Every doubly braced sphere triangulation can be constructed

from one of 5 irreducibles by “vertex splitting”.

The 5 irreducibles are minimally rigid in (R3, ‖ · ‖2,p).

Vertex splitting preserves minimal rigidity in smooth and strictly

convex normed spaces.

Derek Kitson Mary Immaculate College

Braced sphere triangulations and rigidity



Introduction to rigidity Survey of recent work in normed spaces A new result for doubly braced triangulations

Thank you, Steve!

Congratulations and enjoy your retirement!
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