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Setting
A Reproducing Kernel Hilbert Space (RKHS) H on a set X is a
Hilbert space of functions on X s.t. point evaluations are cnts. So

∀z ∈ X ∃kz ∈ H s.t. h(z) = ⟨h, kz⟩.

The function K (w , z) = ⟨kw , kz⟩ on X × X is the kernel.

An RKHS on a ball Bd ⊂ Cd is unitarily invariant if

K (w , z) =
∑
n≥0

an⟨w , z⟩n a0 = 1, an > 0.

It is regular if lim
n→∞

an
an+1

= 1. Regularity forces
∑

n≥0 anz
n to have

radius of convergence 1.

Moreover the norm is invariant under unitaries acting on Bd .
The monomials {zα = zα1

1 · · · zαd
d : α ∈ Nd

0} form orthogonal basis.
So H ⊂ Hol(Bd) consists of analytic functions.
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Examples

Hardy space H2 on D. K (w , z) = 1
1−wz̄ .

H2 = {f =
∑

n≥0 anz
n : ∥f ∥22 =

∑
n≥0 |an|2 < ∞}.

Drury-Arveson space H2
d for 2 ≤ d ≤ ∞. K (w , z) = 1

1−⟨w ,z⟩ .

Dirichlet space
D = {f =

∑
n≥0 anz

n : ∥f ∥2D =
∑

n≥0(n + 1)|an|2 < ∞}.
Bergman space
L2a(Bd) = {f ∈ Hol(Bd) :

∫
Bd

|f (z)|2 dA < ∞}.
Hardy space on balls:
H2(Bd) = {f ∈ Hol(Bd) :

∫
∂Bd

|f (z)|2 dσ < ∞}.
Hs(Bd), s ∈ R, has reproducing kernel
K (w , z) =

∑∞
n=0(n + 1)s⟨w , z⟩n.

Here, s = 0 corresponds to the Drury–Arveson space
and s = −1 yields the Dirichlet space.
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Multipliers: Mult(H) = {f : fH ⊂ H}.
Then Mf is bounded on H, and

∥f ∥∞ ≤ ∥f ∥ := ∥Mf ∥.

Here, the coordinates: zi , 1 ≤ i ≤ d , are multipliers.
A(H) denotes the norm closure of the polynomials in Mult(H).
Note that A(H) ⊂ C (Bd).

Examples

Hardy space A(H2) = A(D) and Mult(H2) = H∞(D).
DA-space Mz1 , . . . ,Mzd is the universal model for a
commuting row contraction. It plays the role in the unilateral
shift for this multivariable context.

Bergman spaces and Hardy spaces on balls:
A(H2(Bd)) = A(L2a(Bd)) = A(Bd) and
Mult(H2(Bd)) = Mult(L2a(Bd)) = H∞(Bd).
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Interpolation Problems
1. Peak Interpolation.

Given a compact E ⊂ ∂Bd and h ∈ C (E ) with ∥h∥∞ = 1,
is there an f ∈ A(H) s.t. f |E = h?
(a) Can one obtain ∥f ∥ < 1 + ε for any ε > 0?
(b) Can one obtain ∥f ∥ = 1?
(c) Can one obtain |f (z)| < 1 for z ∈ Bd \ E?

E must be “small”.
For A(D), Rudin-Carleson yields (b), (c) if |E | = 0.
For A(Bd), d ≥ 2, Bishop and others get (b), (c) if E is totally
null.
For A(H2

d), Clouâtre-D get (a), (c) if E is Mult(H2
d)-totally null.

The multiplier result is more delicate than for uniform algebras
because the norm is greater than the sup norm. So (c) ̸⇒ (b).
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2. Pick or Nevanlinna-Pick Interpolation.

Given F = {z1, . . . , zn} ⊂ Bd , w1, . . . ,wn ∈ C,
is there an f ∈ A(H) s.t.

f (zi ) = wi , 1 ≤ i ≤ n and ∥f ∥ ≤ 1?

In certain spaces (Pick spaces), this holds iff[
k(zi , zj)(1− wiwj)

]
≥ 0.

In all RKHS, this is a necessary condition.

Many of our examples are complete Pick spaces (same works for
matrix valued interpolation), but some, like all Bergmann spaces
and Hardy spaces for d ≥ 2, are not.
This problem has been extensively studied in RKHSs.
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3. Pick and Peak Interpolation.

Given F = {z1, . . . , zn} ⊂ Bd , E ⊂ ∂Bd ,
w1, . . . ,wn ∈ C, and h ∈ C (E ) with ∥h∥∞ = 1,
is there an f ∈ A(H) s.t. f (zi ) = wi , 1 ≤ i ≤ n and f |E = h
and ∥f ∥ < 1 + ε for any ε > 0?

Izzo: yes for uniform algebras if the Pick and Peak problems can
be solved separately.
The ε > 0 is necessary since some Pick data has unique solution.
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Duality
A(D)∗ = H∞

∗ ⊕1 Sing(T)
A(Bd)

∗ = H∞(Bd)∗ ⊕1 TS(∂Bd) Henkin, Cole, Range, Valskii
A(H2

d)
∗ = Mult(H2

d)∗ ⊕1 TS(H
2
d) Clouâtre-D

Definition

A measure µ on ∂Bd is Mult(H)-Henkin (Hen(H)) if it extends to
a weak-∗ cnts. functional on Mult(H).

A measure ν is Mult(H)-totally singular (TS(H)) if
ν ⊥ µ ∀µ ∈ Hen(H).

A set E is Mult(H)-totally null (TN(H)) if µ(E ) = 0 ∀µ ∈ Hen(H).

Hen(H) and TS(H) are complementary closed bands.
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Theorem

A(H)∗ ≃ Mult(H)∗ ⊕1 TS(H) completely isometrically.

Corollary

A(H)∗∗ ≃ Mult(H)⊕Ws completely isometrically

where Ws = TS(H)∗ is an abelian von Neumann algebra.

Idea: 0 → K (H) → C ∗(A(H)) → C (∂Bd) → 0.
φ ∈ A(H)∗. Extend to φ̃ ∈ C ∗(A(H))∗ by HB. ∥φ∥ = ∥φ̃∥cb.
Wittstock’s theorem: ∃V ,W isometries, ∗-reps πa and πs s.t.

φ̃ = V ∗(id(α)⊕πa︸ ︷︷ ︸
Henkin

⊕ πs︸︷︷︸
TS

)W .
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Back to Interpolation

If F ⊂ Bd , let Mult(H)|F = {f |F : φ ∈ Mult(H)} with
∥f |F∥ = inf{∥g∥ : g |F = f |F}.

Theorem (Pick-peak)

H regular unitarily invariant.
F ⊂ Bd finite; E ⊂ ∂Bd closed, Mult(H) totally null.
Then the restriction map

ΦF∪E : A(H) → Mult(H)|F ⊕ C (E ), ΦF∪E (f ) = f |F ⊕ f |E

is a complete quotient map.

Idea: show that

Φ∗ : (Mult(H)|F )∗ ⊕1 M(E ) → Mult(H)∗ ⊕1 TS(Mult(H))

is a complete isometry.
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Corollary

If H is a complete NP space,
F = {z1, . . . , zk} ⊂ Bd ; E ⊂ ∂Bd closed, Mult(H) totally null
W1, . . .Wk ∈ Mn, h ∈ Mn(C (E )) with ∥h∥∞ ≤ 1, ε > 0 and[

K (zi , zj)(In −WiW
∗
j )
]
≥ 0

then ∃f ∈ Mn(A(H)) such that

f (zi ) = Wi , f |E = h and ∥f ∥Mn(Mult(H)) < 1 + ε.

Remark

The ε > 0 is necessary even in the scalar case for A(D). When the

matrix

[
1−wi w̄j

1−zi z̄j

]
is singular, the interpolating function on F of

norm 1 is unique. So for most choices of h, the ε is required.
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Theorem (peak)

H regular unitarily invariant. E ⊂ ∂Bd closed, Mult(H) totally null.
Let g ∈ Mn(C (E )). Then ∃f ∈ Mn(A(H)) s.t.

f |E = g , ∥f ∥ = ∥g∥ and ∥f (z)∥ < ∥g∥ for z ∈ Bd \ E .

Sketch. I (E ) = {f ∈ A(H) : f |E = 0} ◁ A(H).
Show that I (E )⊥ = M(E ) = TS(E ). Thus

A(H)∗ ≃
(
Mult(H)∗ ⊕1 TS(E

c)
)
⊕1 TS(E ).

∴ I (E ) is an M-ideal. ⇒ ΦE takes b1(A(H)) onto b1(C (E )).

Build h ∈ A(H) with h|E = 1, ∥h∥ = 1 and |h(z)| < 1 for
z ∈ Bd \ E . Multiply interpolant by h.

⋆: linear selection.
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Interpolating sets

Closed E ⊂ ∂Bd is interpolating (I) if ΦE is surjective (no norm).

Theorem

Suppose that there are non-empty TN sets.
If E is an interpolating set, then E is Mult(H) totally null.

then points are TN, so can apply peak theorem to E ∪ {z}.
restriction is automatically a complete surjection (uniformly).

Theorem

Suppose that there are no non-empty TN sets.
If E is an interpolating set, then E is finite.
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Theorem

H regular unitarily invariant. E ⊂ ∂Bd closed. TFAE

1 E is TN

2 E is a PI set

3 E is a PPI set

4 E is a P set (∃h ∈ A(H), ∥h∥ = 1 = h|E , |h(z)| < 1 ∀z ̸∈ E )

If there are non-empty TN sets, then

5 E is an interpolating set.
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Existence of TN sets

Most classical examples have non-trivial TN sets.

If
∑

an < ∞, then A(H) ⊆ Mult(H) ⊂ C (Bd).
There are no TN sets.

There is an unbounded kernel with no TN sets.

if TN sets exist, then interpolating sequences exist.
F = {zi : i ≥ 1} ⊂ Bd is interpolating if the map
Mult(H) → l∞, f → (f (zi )) is surjective.
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Zero sets

In A(D) and A(Bd), zero sets coincide with PI sets.

Proposition

If E is a TN set, then ∃h ∈ A(H) s.t. h−1(0) = E .

Proof. Let h peak exactly on E , and set f = 1− h.

Theorem

In Drury-Arveson space, there exist zero sets which are not TN.

Based on a construction by Hartz showing that

Hen(H2
d) ⊋ Hen(H2(Bd)).
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Happy Birthday, Steve!!
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