

INTERPOLATION AND DUALITY ON RKHS SPACES

Kenneth R. Davidson

University of Waterloo

IWOTA August 2021

joint work with [Michael Hartz](#), U.Saarlandes

Setting

A **Reproducing Kernel Hilbert Space (RKHS)** \mathcal{H} on a set X is a Hilbert space of functions on X s.t. point evaluations are cnts. So

$$\forall z \in X \ \exists k_z \in \mathcal{H} \text{ s.t. } h(z) = \langle h, k_z \rangle.$$

The function $K(w, z) = \langle k_w, k_z \rangle$ on $X \times X$ is the **kernel**.

An RKHS on a ball $\mathbb{B}_d \subset \mathbb{C}^d$ is **unitarily invariant** if

$$K(w, z) = \sum_{n \geq 0} a_n \langle w, z \rangle^n \quad a_0 = 1, \quad a_n > 0.$$

It is **regular** if $\lim_{n \rightarrow \infty} \frac{a_n}{a_{n+1}} = 1$. Regularity forces $\sum_{n \geq 0} a_n z^n$ to have radius of convergence 1.

Moreover the norm is invariant under unitaries acting on \mathbb{B}_d .

The monomials $\{z^\alpha = z_1^{\alpha_1} \cdots z_d^{\alpha_d} : \alpha \in \mathbb{N}_0^d\}$ form orthogonal basis. So $\mathcal{H} \subset \text{Hol}(\mathbb{B}_d)$ consists of analytic functions.

EXAMPLES

- Hardy space H^2 on \mathbb{D} . $K(w, z) = \frac{1}{1-w\bar{z}}$.
$$H^2 = \{f = \sum_{n \geq 0} a_n z^n : \|f\|_2^2 = \sum_{n \geq 0} |a_n|^2 < \infty\}.$$
- Drury-Arveson space H_d^2 for $2 \leq d \leq \infty$. $K(w, z) = \frac{1}{1 - \langle w, z \rangle}$.
- Dirichlet space
$$\mathcal{D} = \{f = \sum_{n \geq 0} a_n z^n : \|f\|_{\mathcal{D}}^2 = \sum_{n \geq 0} (n+1) |a_n|^2 < \infty\}.$$
- Bergman space
$$L_a^2(\mathbb{B}_d) = \{f \in \text{Hol}(\mathbb{B}_d) : \int_{\mathbb{B}_d} |f(z)|^2 dA < \infty\}.$$
- Hardy space on balls:
$$H^2(\mathbb{B}_d) = \{f \in \text{Hol}(\mathbb{B}_d) : \int_{\partial \mathbb{B}_d} |f(z)|^2 d\sigma < \infty\}.$$
- $H_s(\mathbb{B}_d)$, $s \in \mathbb{R}$, has reproducing kernel
$$K(w, z) = \sum_{n=0}^{\infty} (n+1)^s \langle w, z \rangle^n.$$

Here, $s = 0$ corresponds to the Drury–Arveson space and $s = -1$ yields the Dirichlet space.

Multipliers: $\text{Mult}(\mathcal{H}) = \{f : f\mathcal{H} \subset \mathcal{H}\}$.

Then M_f is bounded on \mathcal{H} , and

$$\|f\|_\infty \leq \|f\| := \|M_f\|.$$

Here, the coordinates: z_i , $1 \leq i \leq d$, are multipliers.

$A(\mathcal{H})$ denotes the norm closure of the polynomials in $\text{Mult}(\mathcal{H})$.

Note that $A(\mathcal{H}) \subset C(\overline{\mathbb{B}_d})$.

EXAMPLES

- Hardy space $A(H^2) = A(\mathbb{D})$ and $\text{Mult}(H^2) = H^\infty(\mathbb{D})$.
- DA-space M_{z_1}, \dots, M_{z_d} is the universal model for a commuting row contraction. It plays the role in the unilateral shift for this multivariable context.
- Bergman spaces and Hardy spaces on balls:
 $A(H^2(\mathbb{B}_d)) = A(L_a^2(\mathbb{B}_d)) = A(\mathbb{B}_d)$ and
 $\text{Mult}(H^2(\mathbb{B}_d)) = \text{Mult}(L_a^2(\mathbb{B}_d)) = H^\infty(\mathbb{B}_d)$.

Interpolation Problems

1. Peak Interpolation.

Given a compact $E \subset \partial \mathbb{B}_d$ and $h \in C(E)$ with $\|h\|_\infty = 1$,
is there an $f \in A(\mathcal{H})$ s.t. $f|E = h$?

- (a) Can one obtain $\|f\| < 1 + \varepsilon$ for any $\varepsilon > 0$?
- (b) Can one obtain $\|f\| = 1$?
- (c) Can one obtain $|f(z)| < 1$ for $z \in \overline{\mathbb{B}_d} \setminus E$?

E must be “small”.

For $A(\mathbb{D})$, Rudin-Carleson yields (b), (c) if $|E| = 0$.

For $A(\mathbb{B}_d)$, $d \geq 2$, Bishop and others get (b), (c) if E is **totally null**.

For $A(H_d^2)$, Clouâtre-D get (a), (c) if E is **Mult(H_d^2)-totally null**.

The multiplier result is more delicate than for uniform algebras because the norm is greater than the sup norm. So (c) $\not\Rightarrow$ (b).

2. Pick or Nevanlinna-Pick Interpolation.

Given $F = \{z_1, \dots, z_n\} \subset \mathbb{B}_d$, $w_1, \dots, w_n \in \mathbb{C}$,
is there an $f \in A(\mathcal{H})$ s.t.

$$f(z_i) = w_i, \quad 1 \leq i \leq n \quad \text{and} \quad \|f\| \leq 1?$$

In certain spaces (**Pick spaces**), this holds iff

$$[k(z_i, z_j)(1 - w_i \overline{w_j})] \geq 0.$$

In all RKHS, this is a necessary condition.

Many of our examples are **complete Pick spaces** (same works for matrix valued interpolation), but some, like all Bergmann spaces and Hardy spaces for $d \geq 2$, are not.

This problem has been extensively studied in RKHSs.

3. Pick and Peak Interpolation.

Given $F = \{z_1, \dots, z_n\} \subset \mathbb{B}_d$, $E \subset \partial \mathbb{B}_d$,
 $w_1, \dots, w_n \in \mathbb{C}$, and $h \in C(E)$ with $\|h\|_\infty = 1$,
is there an $f \in A(\mathcal{H})$ s.t. $f(z_i) = w_i$, $1 \leq i \leq n$ and $f|E = h$
and $\|f\| < 1 + \varepsilon$ for any $\varepsilon > 0$?

Izzo: yes for uniform algebras if the Pick and Peak problems can be solved separately.

The $\varepsilon > 0$ is necessary since some Pick data has unique solution.

Duality

$$A(\mathbb{D})^* = H_*^\infty \oplus_1 \text{Sing}(\mathbb{T})$$

$$A(\mathbb{B}_d)^* = H^\infty(\mathbb{B}_d)_* \oplus_1 \text{TS}(\partial\mathbb{B}_d)$$

Henkin, Cole, Range, Valskii

$$A(H_d^2)^* = \text{Mult}(H_d^2)_* \oplus_1 \text{TS}(H_d^2)$$

Clouâtre-D

DEFINITION

A measure μ on $\partial\mathbb{B}_d$ is ***Mult(H)-Henkin (Hen(H))*** if it extends to a weak-* cnts. functional on $\text{Mult}(H)$.

A measure ν is ***Mult(H)-totally singular (TS(H))*** if
 $\nu \perp \mu \ \forall \mu \in \text{Hen}(H)$.

A set E is ***Mult(H)-totally null (TN(H))*** if $\mu(E) = 0 \ \forall \mu \in \text{Hen}(H)$.

$\text{Hen}(H)$ and $\text{TS}(H)$ are complementary closed **bands**.

THEOREM

$A(H)^* \simeq \text{Mult}(H)_* \oplus_1 \text{TS}(H)$ completely isometrically.

COROLLARY

$A(H)^{**} \simeq \text{Mult}(H) \oplus \mathcal{W}_s$ completely isometrically

where $\mathcal{W}_s = \text{TS}(H)^*$ is an abelian von Neumann algebra.

Idea: $0 \rightarrow K(\mathcal{H}) \rightarrow C^*(A(H)) \rightarrow C(\partial \mathbb{B}_d) \rightarrow 0$.

$\varphi \in A(H)^*$. Extend to $\tilde{\varphi} \in C^*(A(H))^*$ by HB. $\|\varphi\| = \|\tilde{\varphi}\|_{cb}$.

Wittstock's theorem: $\exists V, W$ isometries, $*$ -reps π_a and π_s s.t.

$$\tilde{\varphi} = V^* \underbrace{(\text{id}^{(\alpha)} \oplus \pi_a)}_{\text{Henkin}} \oplus \underbrace{\pi_s}_{\text{TS}} W.$$

Back to Interpolation

If $F \subset \mathbb{B}_d$, let $\text{Mult}(H)|_F = \{f|_F : \varphi \in \text{Mult}(H)\}$ with
 $\|f|_F\| = \inf\{\|g\| : g|_F = f|_F\}$.

THEOREM (PICK-PEAK)

H regular unitarily invariant.

$F \subset \mathbb{B}_d$ finite; $E \subset \partial\mathbb{B}_d$ closed, $\text{Mult}(H)$ totally null.

Then the restriction map

$$\Phi_{F \cup E} : A(H) \rightarrow \text{Mult}(H)|_F \oplus C(E), \quad \Phi_{F \cup E}(f) = f|_F \oplus f|_E$$

is a complete quotient map.

Idea: show that

$$\Phi^* : (\text{Mult}(H)|_F)^* \oplus_1 M(E) \rightarrow \text{Mult}(H)_* \oplus_1 TS(\text{Mult}(H))$$

is a complete isometry.

COROLLARY

If H is a complete NP space,

$F = \{z_1, \dots, z_k\} \subset \mathbb{B}_d$; $E \subset \partial \mathbb{B}_d$ closed, $\text{Mult}(H)$ totally null
 $W_1, \dots, W_k \in \mathcal{M}_n$, $h \in \mathcal{M}_n(C(E))$ with $\|h\|_\infty \leq 1$, $\varepsilon > 0$ and

$$[K(z_i, z_j)(I_n - W_i W_j^*)] \geq 0$$

then $\exists f \in \mathcal{M}_n(A(H))$ such that

$$f(z_i) = W_i, \quad f|_E = h \quad \text{and} \quad \|f\|_{\mathcal{M}_n(\text{Mult}(H))} < 1 + \varepsilon.$$

REMARK

The $\varepsilon > 0$ is necessary even in the scalar case for $A(\mathbb{D})$. When the matrix $\begin{bmatrix} 1 - w_i \bar{w}_j \\ 1 - z_i \bar{z}_j \end{bmatrix}$ is singular, the interpolating function on F of norm 1 is unique. So for most choices of h , the ε is required.

THEOREM (PEAK)

H regular unitarily invariant. $E \subset \partial \mathbb{B}_d$ closed, $\text{Mult}(H)$ totally null.
Let $g \in \mathcal{M}_n(C(E))$. Then $\exists f \in \mathcal{M}_n(A(H))$ s.t.

$$f|_E = g, \quad \|f\| = \|g\| \quad \text{and} \quad \|f(z)\| < \|g\| \text{ for } z \in \overline{\mathbb{B}_d} \setminus E.$$

Sketch. $I(E) = \{f \in A(H) : f|_E = 0\} \triangleleft A(H)$.

Show that $I(E)^\perp = M(E) = \text{TS}(E)$. Thus

$$A(H)^* \simeq (\text{Mult}(H)_* \oplus_1 \text{TS}(E^c)) \oplus_1 \text{TS}(E).$$

$\therefore I(E)$ is an **M-ideal**. $\Rightarrow \Phi_E$ takes $\overline{b_1(A(H))}$ onto $\overline{b_1(C(E))}$.

Build $h \in A(H)$ with $h|_E = 1$, $\|h\| = 1$ and $|h(z)| < 1$ for $z \in \overline{\mathbb{B}_d} \setminus E$. Multiply interpolant by h .

★: linear selection.

Interpolating sets

Closed $E \subset \partial\mathbb{B}_d$ is **interpolating (I)** if Φ_E is surjective (no norm).

THEOREM

Suppose that there are non-empty TN sets.

If E is an interpolating set, then E is $\text{Mult}(H)$ totally null.

- then points are TN, so can apply peak theorem to $E \cup \{z\}$.
- restriction is automatically a complete surjection (uniformly).

THEOREM

Suppose that there are no non-empty TN sets.

If E is an interpolating set, then E is finite.

THEOREM

H regular unitarily invariant. $E \subset \partial \mathbb{B}_d$ closed. TFAE

- ① E is TN
- ② E is a PI set
- ③ E is a PPI set
- ④ E is a P set ($\exists h \in A(H), \|h\| = 1 = h|_E, |h(z)| < 1 \forall z \notin E$)

If there are non-empty TN sets, then

- ⑤ E is an interpolating set.

Existence of TN sets

- Most classical examples have non-trivial TN sets.
- If $\sum a_n < \infty$, then $A(H) \subseteq \text{Mult}(H) \subset C(\overline{\mathbb{B}_d})$.
There are no TN sets.
- There is an unbounded kernel with no TN sets.
- if TN sets exist, then interpolating sequences exist.
 $F = \{z_i : i \geq 1\} \subset \mathbb{B}_d$ is **interpolating** if the map
 $\text{Mult}(H) \rightarrow l^\infty, f \rightarrow (f(z_i))$ is surjective.

Zero sets

In $A(\mathbb{D})$ and $A(\mathbb{B}_d)$, zero sets coincide with PI sets.

PROPOSITION

If E is a TN set, then $\exists h \in A(H)$ s.t. $h^{-1}(0) = E$.

Proof. Let h peak exactly on E , and set $f = 1 - h$.

THEOREM

In Drury-Arveson space, there exist zero sets which are not TN.

Based on a construction by Hartz showing that

$$\text{Hen}(H_d^2) \supsetneq \text{Hen}(H^2(\mathbb{B}_d)).$$

Happy Birthday, Steve!!