Construction of New Toric Quantum Codes

Clarice Dias de Albuquerque
Reginaldo Palazzo Júnior
Universidade Estadual de Campinas - Unicamp
Eduardo Brandani da Silva
Universidade Estadual de Maringá
• Introduction
 ◦ Quantum codes
 ◦ Proposal

• Stabilizer Codes
• Known Toric Quantum Codes
• New Toric Quantum Codes
• Conclusions
Presentation Outline

- Introduction
- Stabilizer Codes
 - Definition and properties
- Known Toric Quantum Codes
- New Toric Quantum Codes
- Conclusions
• Introduction
• Stabilizer Codes
• **Known Toric Quantum Codes**
 - Kitaev’s codes
 - Algebraic interpretation
 - Bombin and Martin-Delgado’s codes
• New Toric Quantum Codes
• Conclusions
Presentation Outline

• Introduction
• Stabilizer Codes
• Known Toric Quantum Codes
 • New Toric Quantum Codes
 ◦ Lattices, quadratic forms and polyominoes
 ◦ Toric quantum codes - An algebraic approach
 ◦ Parameters of the codes
 ◦ Shape of the polyomino
 ◦ Reproduced known toric quantum codes
 ◦ New class of toric quantum codes
 • Conclusions
Presentation Outline

- Introduction
- Stabilizer Codes
- Known Toric Quantum Codes
- New Toric Quantum Codes
- Conclusions
Introduction
Quantum Codes

- **QUANTUM CODES:**
 The construction of quantum error-correcting codes (QEC) is strongly dependent on the properties of the classical linear codes.
Quantum Codes

- **Quantum Codes**: The construction of quantum error-correcting codes (QEC) is strongly dependent on the properties of the classical linear codes.

- **A Particular Approach of Quantum Codes**: The topological quantum error-correcting codes (TQC) make the quantum states to depend on topological properties of a physical system. This is a form of realizing fault-tolerant quantum computation, because topological properties are invariant under smooth degradations.
Quantum Codes

- **Quantum Codes**: The construction of quantum error-correcting codes (QEC) is strongly dependent on the properties of the classical linear codes.

- **A Particular Approach of Quantum Codes**: The topological quantum error-correcting codes (TQC) make the quantum states to depend on topological properties of a physical system. This is a form of realizing fault-tolerant quantum computation, because topological properties are invariant under smooth degradations.

- **Toric Codes**: Kitaev proposes the class of *toric codes*, a subclass of the stabilizer quantum codes associated with the square lattice of torus \mathbb{Z}^2.
Proposal

• **PROPOSAL:**
 It is possible to generate toric quantum codes by means of tessellations of square lattice of torus by translations of a determined fundamental region.
Stabilizer Codes
Stabilizer Codes

- Pauli group of \(n \) qubits:

\[
P_n = \pm \{I, \sigma_x, \sigma_y, \sigma_z\} \otimes n.
\]

\[
I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \sigma_x \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \sigma_z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
\]
Stabilizer Codes

- **Pauli group of** \(n \) **qubits:**

\[
\mathcal{P}_n = \pm \{ I, \sigma_x, \sigma_y, \sigma_z \} \otimes n.
\]

\[
I \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \sigma_x \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \sigma_z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.
\]

- **Properties:**
 - For each \(M \in \mathcal{P}_n \), we have \(M^2 = \pm I \);
 - If \(M^2 = I \), then \(M \) is Hermitian; if \(M^2 = -I \), then \(M \) is anti-Hermitian.
 - \(M, N \in \mathcal{P}_n \Rightarrow MN = NM \) or \(MN = -NM \).
Stabilizer Codes

- Let S be an Abelian subgroup of \mathcal{P}_n called stabilizer group.
Stabilizer Codes

- Let S be an Abelian subgroup of \mathcal{P}_n called *stabilizer group*.

- The elements of S are called *stabilizer operators*.
Stabilizer Codes

- Let S be an Abelian subgroup of \mathcal{P}_n called \textit{stabilizer group}.

- The elements of S are called \textit{stabilizer operators}.

- A stabilizer code $C_S \subseteq \mathcal{H}$ associated to S is the simultaneous eigenspace, with eigenvalue $+1$, comprising all elements of an Abelian subgroup S

$$C_S = \{|\psi\rangle; \quad M|\psi\rangle = |\psi\rangle \quad \forall M \in S\}.$$
Stabilizer Codes

- If S has $n - k$ generators, then the dimension of C_S is 2^k.
Stabilizer Codes

- If S has $n - k$ generators, then the dimension of C_S is 2^k.
- The generators of S can be viewed as the parity-check operators of a quantum code
 - $E \in \mathcal{P}_n$ commute with every $M_i \in S \Rightarrow$ no error is detected.
 - $E \in \mathcal{P}_n$ anti-commute with any $M_i \in S \Rightarrow$ the error is detected.
Stabilizer Codes

- If S has $n - k$ generators, then the dimension of C_S is 2^k.

- The generators of S can be viewed as the parity-check operators of a quantum code
 - $E \in \mathcal{P}_n$ commute with every $M_i \in S \Rightarrow$ no error is detected.
 - $E \in \mathcal{P}_n$ anti-commute with any $M_i \in S \Rightarrow$ the error is detected.

- The operators of \mathcal{P}_n which commute with every $M_i \in S$ but do not belong to S, preserve the coding space C_S, by not acting trivially on it.
Stabilizer Codes

- If S has $n - k$ generators, then the dimension of C_S is 2^k.

- The generators of S can be viewed as the parity-check operators of a quantum code
 - $E \in \mathcal{P}_n$ commute with every $M_i \in S \Rightarrow$ no error is detected.
 - $E \in \mathcal{P}_n$ anti-commute with any $M_i \in S \Rightarrow$ the error is detected.

- The operators of \mathcal{P}_n which commute with every $M_i \in S$ but do not belong to S, preserve the coding space C_S, by not acting trivially on it.

- The code distance is given by the least weight of $E \in \mathcal{P}_n$ such that E commutes with every $M_i \in S$ but does not belong to S.
Known Toric Quantum Codes
Kitaev’s Toric Codes

- Qubits ↔ edges of the tessellation \(\{4, 4\}\) of the two dimensional torus.
Kitaev’s Toric Codes

- Qubits ↔ edges of the tessellation \(\{4, 4\} \) of the two dimensional torus.

- Square lattice \(m \times m \Rightarrow n = 2m^2 \) and \(k = 2 \).
Kitaev’s Toric Codes

- Qubits ↔ edges of the tessellation \{4, 4\} of the two dimensional torus.

- Square lattice $m \times m \Rightarrow n = 2m^2$ and $k = 2$.

- Stabilizer operators:

\[
A_v = \sum_{j \in E_v} \sigma_x^j, \quad B_f = \sum_{j \in E_f} \sigma_z^j.
\]
Kitaev’s Toric Codes

- Qubits ↔ edges of the tessellation \(\{4, 4\} \) of the two dimensional torus.

- Square lattice \(m \times m \Rightarrow n = 2m^2 \) and \(k = 2 \).
- Stabilizer operators:
 \[
 A_v = \sum_{j \in E_v} \sigma_x^j, \quad B_f = \sum_{j \in E_f} \sigma_z^j.
 \]
- \(C = \{ |\psi\rangle : A_v |\psi\rangle = |\psi\rangle, \quad B_f |\psi\rangle = |\psi\rangle \quad \forall \, v, f \} \).
Kitaev’s Toric Codes

- The toric codes detect $d - 1$ errors and correct $\left\lfloor \frac{d-1}{2} \right\rfloor$ errors.
Kitaev’s Toric Codes

- The toric codes detect $d - 1$ errors and correct $\left\lfloor \frac{d-1}{2} \right\rfloor$ errors.

- The distance is the number of edges contained in the shortest homologically nontrivial cycle on the tessellation or dual tessellation. Hence $d = m$.

\[C(1,v) \quad C(2,v) \]
\[C(1,f) \quad C(2,f) \]
Kitaev’s Toric Codes

- The toric codes detect $d - 1$ errors and correct $\left\lfloor \frac{d-1}{2} \right\rfloor$ errors.

- The distance is the number of edges contained in the shortest homologically nontrivial cycle on the tessellation or dual tessellation. Hence $d = m$.

- $[[2m^2, 2, m]]$.
Algebraic interpretation

- Kitaev’s code may be characterized as the set of cosets of \(\mathbb{Z}^2/m\mathbb{Z}^2 \cong \mathbb{Z}_m \times \mathbb{Z}_m \).
Algebraic interpretation

- Kitaev's code may be characterized as the set of cosets of \(\mathbb{Z}^2/m\mathbb{Z}^2 \cong \mathbb{Z}_m \times \mathbb{Z}_m \).

- The identifications of the opposite edges of the region delimited by \(\mathbb{Z}_m \times \mathbb{Z}_m \) result in the identification with the flat torus.
Algebraic interpretation

- Kitaev’s code may be characterized as the set of cosets of \(\mathbb{Z}^2 / m \mathbb{Z}^2 \cong \mathbb{Z}_m \times \mathbb{Z}_m \).

- The identifications of the opposite edges of the region delimited by \(\mathbb{Z}_m \times \mathbb{Z}_m \) result in the identification with the flat torus.

- The area associated with the lattice \(\mathbb{Z}_m \times \mathbb{Z}_m \) is \(m^2 \). Thus, there are \(2m^2 \) edges, that is, \(n = 2m^2 \) qubits.
Algebraic interpretation

- Kitaev’s code may be characterized as the set of cosets of \(\mathbb{Z}^2 / m \mathbb{Z}^2 \cong \mathbb{Z}_m \times \mathbb{Z}_m \).

- The identifications of the opposite edges of the region delimited by \(\mathbb{Z}_m \times \mathbb{Z}_m \) result in the identification with the flat torus.

- The area associated with the lattice \(\mathbb{Z}_m \times \mathbb{Z}_m \) is \(m^2 \). Thus, there are \(2m^2 \) edges, that is, \(n = 2m^2 \) qubits.

- The qubits to be encoded are related to the essential cycles of the surface (meridian and parallel), therefore, \(k = 2 \).
Algebraic interpretation

- Kitaev’s code may be characterized as the set of cosets of $\mathbb{Z}^2/m\mathbb{Z}^2 \cong \mathbb{Z}_m \times \mathbb{Z}_m$.

- The identifications of the opposite edges of the region delimited by $\mathbb{Z}_m \times \mathbb{Z}_m$ result in the identification with the flat torus.

- The area associated with the lattice $\mathbb{Z}_m \times \mathbb{Z}_m$ is m^2. Thus, there are $2m^2$ edges, that is, $n = 2m^2$ qubits.

- The qubits to be encoded are related to the essential cycles of the surface (meridian and parallel), therefore, $k = 2$.

- The minimum distance of the code corresponds to the least number of edges in the dual lattice to be covered between the coset representatives, $d = m$.
Bombin and Martin-Delgado’s Codes

- Another regular lattice of the torus:
Bombin and Martin-Delgado’s Codes

- Another regular lattice of the torus:

 \[
 X \quad \text{ } \quad X \\
 X \quad \text{ } \quad X \\
 X \quad \text{ } \quad X \\
 X \\
 X \\
 X \\
 X
 \]

- \(m \) two dimensional Lee spheres with radius \(r \) may be used to tessellate the torus \(\mathbb{Z}_m \times \mathbb{Z}_m \), where \(m = 2r^2 + 2r + 1 \) and \(r = 1, 2, \ldots \).
Bombin and Martin-Delgado’s Codes

- Another regular lattice of the torus:

 \[
 \begin{array}{c|c}
 \hline
 X & X \\
 \hline
 X & X \\
 \hline
 \end{array}
 \quad
 \begin{array}{c|c}
 X & X \\
 \hline
 X & X \\
 \hline
 \end{array}
 \]

- \(m\) two dimensional Lee spheres with radius \(r\) may be used to tessellate the torus \(\mathbb{Z}_m \times \mathbb{Z}_m\), where \(m = 2r^2 + 2r + 1\) and \(r = 1, 2, \ldots\).

- The length of the code \(n\) is the number of edges of the Lee spheres and the minimum distance of the code is the radius \(r\) of Lee spheres.
Bombin and Martin-Delgado’s Codes

- Another regular lattice of the torus:

 ![Lattice Diagram]

 - \(m \) two dimensional Lee spheres with radius \(r \) may be used to tessellate the torus \(\mathbb{Z}_m \times \mathbb{Z}_m \), where \(m = 2r^2 + 2r + 1 \) and \(r = 1, 2, \ldots \).

 - The length of the code \(n \) is the number of edges of the Lee spheres and the minimum distance of the code is the radius \(r \) of Lee spheres.

 - This system of lattices supplies codes with parameters \([d^2 + 1, 2, d]\) and keep the same properties of the original Kitaev’s code.
New Toric Quantum Codes
The lattice \mathbb{Z}^2 is generated by vectors $\nu_1 = (1, 0)$ and $\nu_2 = (0, 1)$, with fundamental region described by a square, with area equal to 1, and its corresponding quadratic form is $x^2 + y^2$.
Lattices, Quadratic Forms and Polyominoes

- The lattice \mathbb{Z}^2 is generated by vectors $\nu_1 = (1, 0)$ and $\nu_2 = (0, 1)$, with fundamental region described by a square, with area equal to 1, and its corresponding quadratic form is $x^2 + y^2$.

- A polyomino is the domino generalization.
Lattices, Quadratic Forms and Polyominoes

- The lattice \mathbb{Z}^2 is generated by vectors $\nu_1 = (1, 0)$ and $\nu_2 = (0, 1)$, with fundamental region described by a square, with area equal to 1, and its corresponding quadratic form is $x^2 + y^2$.

- A polyomino is the domino generalization.

- A close-packed code corresponds to any tessellation of an $m \times m$ torus by translations of a given polyomino.
Lattices, Quadratic Forms and Polyominoes

- The lattice \mathbb{Z}^2 is generated by vectors $\nu_1 = (1, 0)$ and $\nu_2 = (0, 1)$, with fundamental region described by a square, with area equal to 1, and its corresponding quadratic form is $x^2 + y^2$.

- A polyomino is the domino generalization.

- A close-packed code corresponds to any tessellation of an $m \times m$ torus by translations of a given polyomino.

- Lee spheres are a special type of polyominoes that was used to generate perfect classical codes and the class of $[[d^2 + 1, 2, d]]$ quantum codes.
Algebraic Approach

- Consider the quotient group $\mathbb{Z}^2 / m\mathbb{Z}^2 \cong \mathbb{Z}_m \times \mathbb{Z}_m$.
Algebraic Approach

- Consider the quotient group $\mathbb{Z}^2/m\mathbb{Z}^2 \cong \mathbb{Z}_m \times \mathbb{Z}_m$.

- Regular tessellations of $m \times m$ torus given by translations of a determined polyomino may be used to define a toric code.
Algebraic Approach

- Consider the quotient group $\mathbb{Z}^2 / m\mathbb{Z}^2 \cong \mathbb{Z}_m \times \mathbb{Z}_m$.

- Regular tessellations of $m \times m$ torus given by translations of a determined polyomino may be used to define a toric code.

- The area of the polyomino has to divide the area of lattice, m^2.
Algebraic Approach

- Consider the quotient group $\mathbb{Z}^2/m\mathbb{Z}^2 \cong \mathbb{Z}_m \times \mathbb{Z}_m$.

- Regular tessellations of $m \times m$ torus given by translations of a determined polyomino may be used to define a toric code.

- The area of the polyomino has to divide the area of lattice, m^2.

- Consider the cases when the area of the polyomino is m.
Algebraic Approach

- Consider the quotient group \(\mathbb{Z}^2 / m \mathbb{Z}^2 \cong \mathbb{Z}_m \times \mathbb{Z}_m \).

- Regular tessellations of \(m \times m \) torus given by translations of a determined polyomino may be used to define a toric code.

- The area of the polyomino has to divide the area of lattice, \(m^2 \).

- Consider the cases when the area of the polyomino is \(m \).

- A systematic approach to tessellate the lattice \(\mathbb{Z}_m \times \mathbb{Z}_m \), is to determine the cosets, \(X \).
Algebraic Approach

- Consider the quotient group $\mathbb{Z}^2/m\mathbb{Z}^2 \cong \mathbb{Z}_m \times \mathbb{Z}_m$.
- Regular tessellations of $m \times m$ torus given by translations of a determined polyomino may be used to define a toric code.
- The area of the polyomino has to divide the area of lattice, m^2.
- Consider the cases when the area of the polyomino is m.
- A systematic approach to tessellate the lattice $\mathbb{Z}_m \times \mathbb{Z}_m$, is to determine the cosets, X.
- $X \rightarrow (x, y) \in \mathbb{Z}_m \times \mathbb{Z}_m$ indicates the place of a polyomino.
• The set of representatives of polyominoes, \mathcal{A}, corresponds to a classical lattice code.
Algebraic Approach

- The set of representatives of polyominoes, \mathcal{A}, corresponds to a classical lattice code.
- \mathcal{A} is a subgroup of $(\mathbb{Z}_m \times \mathbb{Z}_m, +)$.
Algebraic Approach

- The set of representatives of polyominoes, \(\mathcal{A} \), corresponds to a classical lattice code.

- \(\mathcal{A} \) is a subgroup of \((\mathbb{Z}_m \times \mathbb{Z}_m, +)\).

- To get a polyomino with area \(m \), the cardinality of \(\mathcal{A} \) must be \(m \), \(|\mathcal{A}| = m\).
Algebraic Approach

- The set of representatives of polyominoes, \(A \), corresponds to a classical lattice code.
- \(A \) is a subgroup of \((\mathbb{Z}_m \times \mathbb{Z}_m, +)\).
- To get a polyomino with area \(m \), the cardinality of \(A \) must be \(m, |A| = m \).
- The quadratic form of the lattice \(\mathbb{Z}_m \times \mathbb{Z}_m \) will be used to find the lattice vectors \((x, y) \in A\)

\[x^2 + y^2 = m. \]
Algebraic Approach

- The set of representatives of polyominoes, \(\mathcal{A} \), corresponds to a classical lattice code.

- \(\mathcal{A} \) is a subgroup of \((\mathbb{Z}_m \times \mathbb{Z}_m, +)\).

- To get a polyomino with area \(m \), the cardinality of \(\mathcal{A} \) must be \(m, |\mathcal{A}| = m \).

- The quadratic form of the lattice \(\mathbb{Z}_m \times \mathbb{Z}_m \) will be used to find the lattice vectors \((x, y) \in \mathcal{A} \)

\[
x^2 + y^2 = m.
\]

- Since we wish that \(|\mathcal{A}| = m \), we have:
 - \(\gcd(x, y) = 1 \Rightarrow \mathcal{A} = \langle (x, y) \rangle \).
 - \(\gcd(x, y) = \delta \neq 0, 1 \Rightarrow \mathcal{A} = \langle (x, y), (-y, x) \rangle \).
Parameters of the Codes

- Once the subspace given by the representatives is known, it is possible to choose the polyominoes that may tessellate the lattice.
Parameters of the Codes

- Once the subspace given by the representatives is known, it is possible to choose the polyominoes that may tessellate the lattice.

- The quantum code associated to this tessellation is defined as:
 - \(n = \) number of edges of the polyomino = \(2m \).
 - \(k = 2 \).
 - The minimum code distance is given by the shortest distance between two representatives of the polyominoes. Therefore

\[
d = d_M = |x| + |y|,
\]

where \(d_M \) is the *Mannhein distance*.

- \([2m, 2, d_M]\).
Shape of the Polyomino

- It is possible to tessellate the same Z^2_m lattice by different polyominoes, without modifying the generated quantum code.
Shape of the Polyomino

- It is possible to tessellate the same \mathbb{Z}_m^2 lattice by different polyominoes, without modifying the generated quantum code.

- The shape of the polyomino influences the error correction pattern.
Shape of the Polyomino

- It is possible to tessellate the same \mathbb{Z}_m^2 lattice by different polyominoes, without modifying the generated quantum code.

- The shape of the polyomino influences the error correction pattern.

- The optimum shape for the polyomino depends on the type of graph associated with the discrete channel without memory.
Shape of the Polyomino

- It is possible to tessellate the same \mathbb{Z}_m^2 lattice by different polyominoes, without modifying the generated quantum code.

- The shape of the polyomino influences the error correction pattern.

- The optimum shape for the polyomino depends on the type of graph associated with the discrete channel without memory.

- This shape may generally be considered as the union of a square $x \times x$ with a square $y \times y$.
When $m = 2t^2 + 2t + 1$, for $t = 1, 2, 3, \ldots$, Bombin and Martin-Delgado’s codes are reproduced.
\[[d^2 + 1, 2, d] \] codes

- When \(m = 2t^2 + 2t + 1 \), for \(t = 1, 2, 3, \ldots \), Bombin and Martin-Delgado’s codes are reproduced.
- \(m = (t + 1)^2 + t^2 \Rightarrow x = (t + 1) \) and \(y = t \Rightarrow A = \langle(x, y)\rangle \).
$[[d^2 + 1, 2, d]]$ codes

- **When** $m = 2t^2 + 2t + 1$, **for** $t = 1, 2, 3, \ldots$, **Bombin and Martin-Delgado’s codes are reproduced.**
- $m = (t + 1)^2 + t^2 \Rightarrow x = (t + 1)$ and $y = t \Rightarrow A = \langle(x,y)\rangle$.
- $d = |t + 1| + |t| = 2t + 1$
[[d^2 + 1, 2, d]] codes

- When \(m = 2t^2 + 2t + 1 \), for \(t = 1, 2, 3, \ldots \), Bombin and Martin-Delgado’s codes are reproduced.
- \(m = (t + 1)^2 + t^2 \Rightarrow x = (t + 1) \) and \(y = t \Rightarrow A = \langle (x, y) \rangle \).
- \(d = |t + 1| + |t| = 2t + 1 \)
- \(n = 2m = d^2 + 1 \)
[[d^2 + 1, 2, d]] codes

- When \(m = 2t^2 + 2t + 1 \), for \(t = 1, 2, 3, \ldots \), Bombin and Martin-Delgado's codes are reproduced.
- \(m = (t + 1)^2 + t^2 \Rightarrow x = (t + 1) \) and \(y = t \Rightarrow A = \langle (x, y) \rangle \).
- \(d = |t + 1| + |t| = 2t + 1 \)
- \(n = 2m = d^2 + 1 \)
- \([d^2 + 1, 2, d] \).
[[d^2 + 1, 2, d]] codes

- When \(m = 2t^2 + 2t + 1 \), for \(t = 1, 2, 3, \ldots \), Bombin and Martin-Delgado’s codes are reproduced.

- \(m = (t + 1)^2 + t^2 \Rightarrow x = (t + 1) \) and \(y = t \Rightarrow \mathcal{A} = \langle (x, y) \rangle \).

- \(d = |t + 1| + |t| = 2t + 1 \)

- \(n = 2m = d^2 + 1 \)

- \([[d^2 + 1, 2, d]]\).

- **Example:** \(m = 5 \Rightarrow \mathcal{A} = \langle (2, 1) \rangle \). Code \([[10, 2, 3]]\) is obtained.
When m is a perfect square, the Kitaev’s codes are reproduced.
[[2d^2, 2, d]] codes

- When m is a perfect square, the Kitaev’s codes are reproduced.

 - $m = x^2 + y^2 \Rightarrow x = \pm \sqrt{m}, y = 0 \Rightarrow A = \langle (\sqrt{m}, 0), (0, \sqrt{m}) \rangle$.
[[2d², 2, d]] codes

- When m is a perfect square, the Kitaev’s codes are reproduced.

 - $m = x^2 + y^2 \Rightarrow x = \pm \sqrt{m}, y = 0 \Rightarrow A = \langle (\sqrt{m}, 0), (0, \sqrt{m}) \rangle$.

- $d = |\sqrt{m}|$
[[2d^2, 2, d]] codes

- When m is a perfect square, the Kitaev’s codes are reproduced.
 - $m = x^2 + y^2 \Rightarrow x = \pm \sqrt{m}, y = 0 \Rightarrow A = \langle (\sqrt{m}, 0), (0, \sqrt{m}) \rangle$.

- $d = |\sqrt{m}|$

- $n = 2m = 2d^2$
\[[2d^2, 2, d] \text{ codes} \]

- When \(m \) is a perfect square, the Kitaev’s codes are reproduced.

 \[m = x^2 + y^2 \Rightarrow x = \pm \sqrt{m}, y = 0 \Rightarrow A = \langle (\sqrt{m}, 0), (0, \sqrt{m}) \rangle. \]

- \(d = \lfloor \sqrt{m} \rfloor \)

- \(n = 2m = 2d^2 \)

- \([2d^2, 2, d]]\).
[[2d^2, 2, d]] codes

- When \(m \) is a perfect square, the Kitaev’s codes are reproduced.
 - \(m = x^2 + y^2 \Rightarrow x = \pm \sqrt{m}, y = 0 \Rightarrow A = \langle (\sqrt{m}, 0), (0, \sqrt{m}) \rangle. \)
 - \(d = |\sqrt{m}| \)
 - \(n = 2m = 2d^2 \)
 - \([[2d^2, 2, d]]. \)
- Example: \(m = 4 \Rightarrow A = \{ (0, 0), (2, 0), (0, 2), (2, 2) \}. \) Code \([[8, 2, 2]] \) is obtained.
New Class of Toric Codes

- When $m = x^2 + x^2$, we have $\mathcal{A} = \langle (x, x), (-x, x) \rangle$.

\[d^2 + 1, 2, d \] codes
\[[2d^2, 2, d] \] codes
New Class of Toric Codes
New Class of Toric Codes

• When \(m = x^2 + x^2 \), we have \(A = \langle (x, x), (-x, x) \rangle \).

• \(d = 2x \) and \(n = 2m = d^2 \).
New Class of Toric Codes

- When $m = x^2 + x^2$, we have $\mathcal{A} = \langle (x, x), (-x, x) \rangle$.
- $d = 2x$ and $n = 2m = d^2$.
- $[[d^2, 2, d]]$.
New Class of Toric Codes

- When \(m = x^2 + x^2 \), we have \(\mathcal{A} = \langle (x, x), (-x, x) \rangle \).
- \(d = 2x \) and \(n = 2m = d^2 \).
- \([d^2, 2, d]\).
- \(k/n = 1/d \).
New Class of Toric Codes

- When \(m = x^2 + x^2 \), we have \(\mathcal{A} = \langle (x, x), (-x, x) \rangle \).
- \(d = 2x \) and \(n = 2m = d^2 \).
- \([d^2, 2, d]\).
- \(k/n = 1/d \).

Example: \(m = 8 \Rightarrow \)
\(\mathcal{A} = \{(0, 0), (2, 2), (4, 4), (6, 6), (6, 2), (2, 6), (0, 4), (4, 0)\} \).
Code \([16, 2, 4]\) is obtained.
Conclusions
Conclusions

• Through an algebraic approach it is possible to use the concept of polyomino to generate toric quantum codes by means of tessellations of square lattice of torus by translations of this polyomino;
Conclusions

- Through an algebraic approach it is possible to use the concept of polyomino to generate toric quantum codes by means of tessellations of square lattice of torus by translations of this polyomino;

- The codes defined in this way keep the same properties of Kitaev’s toric codes;
Conclusions

- Through an algebraic approach it is possible to use the concept of polyomino to generate toric quantum codes by means of tessellations of square lattice of torus by translations of this polyomino;

- The codes defined in this way keep the same properties of Kitaev's toric codes;

- Besides reproducing known classes of codes, new classes of toric codes are determined. For instance, the class $[[d^2, 2, d]]$, the best known so far.
Acknowledgment

- UNICAMP
- FAPESP
- CNPQ