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The Elliptic Curve Discrete Logarithm Problem

The Elliptic Curve Discrete Logarithm Problem

Let E be an elliptic curve defined over a finite field Fp

and let S, T ∈ E(Fp). The (in)famous

Elliptic Curve Discrete Logarithm Problem

(ECDLP) is the problem of finding an integer m satis-
fying

T = mS.

There have been many methods proposed for solving the
ECDLP, and in some special cases there are fast (subex-
ponential) algorithms, but for general curves and points,
the best known algorithms are slow (exponential), and
indeed have running time O(

√
p ).
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The Elliptic Curve Discrete Logarithm Problem

The Discrete Logarithm Problem Over F∗p
Before the introduction of elliptic curves into cryptog-
raphy, Diffie and Hellman suggested using the discrete
logarithm problem in F∗p as an underlying had problem.

The Index Calculus is a fast algorithm to solve the
DLP in F∗p. The simple idea underlying the Index Cal-
culus is to lift the problem from F∗p to Z, solve the
problem in Z, and then reduce the solution modulo p.

Of course, there’s more to the Index Calculus than that.
In particular, a crucial property ofQ that makes it work
is the fact that Q∗ has a comparatively large number of
small generators (primes).

Thus in order to solve β = αm in Fp, one lifts many

choices of αi and βαj modulo p to Z, finds instances
where the lifts are smooth (products of small primes),
eliminates the primes to get a relation among the lifts,
and then reduces modulo p.
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The Elliptic Curve Discrete Logarithm Problem

The Four Faces of Lifting ECDLP

It is tempting to try a similar lifting procedure to solve
the ECDLP, and many people have tried to do this in
various ways. None have been successful, but it seems
worthwhile to take stock of the methods that have been
tried and to fit them into a general framework.

Further, I feel that it is quite instructive to compare not
only the different methods, but also to study the reasons
why each one seems to fail to work.

It turns out that there are four quite distinct ways to
try to lift the ECDLP. None of them succeeds, but each
appears to fail for a different reason. My aim in this
talk is to survey these

Four Faces of Lifting ECDLP,

explain their similarities and differences, and describe
the distinct roadblocks that arise.
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The Elliptic Curve Discrete Logarithm Problem

The Elliptic Curve Lifting Problem

Let E/Fp and S, T ∈ E(Fp) be an ECDLP. The

Lifting Problem for (Fp, E, S, T )

is the problem of finding the following quantities:

• A ring R̂ contained in a field K̂.

• An ideal p of R̂ with R̂/p = Fp.

• An elliptic curve Ê/K̂ satisfying Ê ≡ E (mod p).

• Points Ŝ, T̂ ∈ Ê(K̂) satisfying

Ŝ ≡ S (mod p) and T̂ ≡ T (mod p).

The lifting problem has many variants. For example,
the ring R may be a local ring (e.g., Zp, the ring of p-
adic integers) or a global ring (e.g., Z) and the lifted
points Ŝ, T̂ may be torsion points or nontorsion points.
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The Elliptic Curve Discrete Logarithm Problem

The Four Faces

Thus we may picture the ECDLP as a castle with four
walls, under each of which is camped a “Lifting Army”
having its own unique weaponary to use for an assault.
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The remainder of this talk will be devoted to considering
in turn each of these lifting scenarios.
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Local Nontorsion Lifts

Local Nontorsion Lifts

We start by fixing a Weierstrass equation for Ê with in-
teger coefficients whose reduction modulo p is the orig-
inal curve.

The goal now is to lift a point Q ∈ E(Fp) to a p-adic

point Q̂ ∈ Ê(Qp). This is accomplished via Hensel’s
Lemma.

The idea is to start with the point Q = Q1 and first lift
it to a point

Q2 modulo p2,

and then lift that to a point

Q3 modulo p3,

and so on.

We illustrate the procedure with an example.
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Local Nontorsion Lifts

Local Nontorsion Lifts — An Example

We take p = 257 and look at the curve and point

E : Y 2 = X3 + 23X + 11 (mod p), Q = (7, 1) ∈ E(Fp).

In order to lift Q, we set

Q′ = (7 + pu, 1 + pv),

substitute into the equation for E,

(1 + pv)2 ≡ (7 + pu)3 + 23(7 + pu) + 11 (mod p2),

and solve for u and v. We find that u and v satisfy

v ≡ 85u + 1 (mod p).

Hence for every u ∈ Z/pZ we have lifted Q to

Q′ = (7 + 257u, 258 + 21845u) ∈ E(Z/p2Z).

The same process gives lifts modulo p3, p4, etc., and at
each step we have p choices for the lift.
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Local Nontorsion Lifts

Solving the ECDLP Using Local Nontorsion Lifts

Let’s try to solve the ECDLP for S, T ∈ E(Fp) using
nontorsion lifts, where

T = mS in E(Fp).

Suppose that we can lift S and T to nontorsion points
Ŝ, T̂ ∈ Ê(Qp) while maintaining the relation

T̂ = mŜ.

Multiplying by N = #E(Fp), the points NT̂ and NŜ
are in the so-called formal group of E(Qp), and the
formal group has an easily computable logarithm func-
tion logF .

Since we know Ŝ and T̂ and N , we can compute

m =
logF(NT̂ )

logF(NŜ)
∈ Qp.
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Local Nontorsion Lifts

The Obstacle To Using Local Nontorsion Lifts
So what’s the problem? As we have seen, it is easy to
lift S = S1 and T = T1 to points S2 and T2 modulo p2,
and then to points S3 and T3 modulo p3, and so on.

Indeed, it’s so easy, we can actually compute p different
choices for each of S2 and T2.

However, once we choose a particular S2, then only one
of the p possible choices for T2 preserves the relation

T2 = mS2.

And as we continue making choices to compute lifts Ŝ
and T̂ in Ê(Qp), we only preserve the relation

T̂ = mŜ

if, at each step, the lifts are chosen consistantly.

Unfortunately (or maybe I should say fortunately), there
is no way known to make such consistant choices with-
out already knowing the value of m.
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Local Torsion Lifts

Local Torsion Lifts

Let Q ∈ E(Fp) be a point of order n (with n 6= p).
We have seen that Q can be lifted to a p-adic point
Q̂ ∈ E(Qp) in many different ways.

However, one can show that there is a unique way to
lift Q to a point of order n in E(Qp). In other words,

there is a unique point Q̂ ∈ E(Qp) satisfying

nQ̂ = Ô and Q̂ ≡ Q (mod p).

It is quite easy in practice to compute Q̂. More precisely,
we can calculate the lift Qk mod pk as long as we can
work with integers of size pk. We again illustrate with
an example
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Local Torsion Lifts

Local Torsion Lifts — An Example

We continue with the prime p = 257, curve, and point

E : Y 2 = X3 + 23X + 11 Q = (7, 1) ∈ E(Fp).

The point Q has order n = 83, i.e., 83Q = O.

Recall that for every u ∈ Z/257Z, we found a lift

Q′ = (7 + 257u, 258 + 85 · 257u) ∈ E(Z/2572Z).

We now impose the additional condition

83Q′ ≡ O (mod 2572).

Treating u as an indeterminate, we can compute 83Q′
modulo 2572 using linear polynomials. We find that

83Q′ ≡ O (mod 2572) ⇐⇒ u ≡ 18 (mod 257).

Hence Q′ = (4633, 63223) ∈ E(Z/2572Z) satisfies

Q′ ≡ Q (mod 257) and 83Q′ ≡ O (mod 2572).
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Local Torsion Lifts

Solving ECDLP with Local Torsion Lifts

Let’s make another attempt to solve the ECDLP for
S, T ∈ E(Fp), this time using torsion lifts.

We lift S and T to points Ŝ and T̂ of order n in E(Qp)
and observe that

T̂ −mŜ ≡ T −mS ≡ O (mod p), and

n(T̂ −mŜ) = nT̂ −mnŜ = Ô.

The uniqueness of the torsion lifts tells us that we still
have the relation

T̂ = mŜ.

Thus we are reduced to solving the ECDLP in E(Qp).

(Un)fortunately, if we multiply the relation T̂ = mŜ
by n to move it into the formal group, then we get
Ô = mÔ. And no one knows an efficient way to solve
the ECLDP in E(Qp) without moving into the formal
group.
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Global Torsion Lifts

Global Torsion Lifts Over Q
Suppose instead that we lift S, T ∈ E(Fp) to global
torsion points

Ŝ, T̂ ∈ Ê(Q)tors.

Then the relation T̂ = mŜ is maintained, and it is very
easy to find m. For example, we could look at

T̂ ≡ mŜ (mod q) for small primes Q = 3, 5, 7, . . . ,

and use the Chinese Remainder Theorem to reconstruct m.

(Un)fortunately, this won’t work, since Ê(Q)tors tends
to be small, and in general we have:

Theorem. (Mazur) For all elliptic curves Ê/Q,

#Ê(Q)tors ≤ 16.
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Global Torsion Lifts

Global Torsion Lifts Over Number Fields

There is no reason to restrict our attention to Q. If we
take a sufficiently large number field K/Q, then we can
always find points

Ŝ, T̂ ∈ E(K)tors

and a prime ideal p of the ring of integers RK so that

Ŝ ≡ S (mod p) and T̂ ≡ T (mod p).

Then solving T̂ = mŜ in E(K) solves the ECLDP.
To do this, we need to work in the field K. If K/Q has
small degree, this is feasible. (Un)fortunately, we have:

Theorem. (Serre) Let Ê/Q and let T ∈ E(K) be a
point of order n. Then generally one has

[K : Q] ≥ c# GL2(Z/nZ) ≈ cn4.
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Global Nontorsion Lifts

Global Nontorsion Lifts

Continuing with our besieged castle imagery, the “Global
Nontorsion Army” has two different pieces of artillary
in its armory.

These two methods are:
• The Easy Lifting Method.
• The Hard Lifting Method.

In the Easy Lifting Method, we choose the lifted curve
Ê and lifted points Q̂1, . . . , Q̂r ∈ Ê(Q) simultaneously
using some elementary method such as linear algebra.

In the Hard Lifting Method, we use an elementary
method to lift the curve (and possibly one or more
points). Then we attempt to lift one or more additional
points that were not considered when constructing the
original lift.
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Global Nontorsion Lifts — The Easy Lifting Method

Global Nontorsion Lifts — The Easy Lifting Method

If we treat the coefficients of the Weierstrass equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

as indeterminates, then we can substitute up to 5 points
(x1, y1), (x2, y2), . . . and solve for the coefficients.

More generally, we can use linear algebra to force a cubic
form F (X,Y, Z) to go through 9 specified points.

For example, given a curve E/Fp and points S, T ∈ E(Fp),

it is easy to find Ê/Q and Ŝ, T̂ ∈ Ê(Q) satisfying

Ê ≡ E (mod p), Ŝ ≡ S (mod p), T̂ ≡ T (mod p).

If rank Ê(Q) = 1, or more generally if Ŝ and T̂ are
dependent, then it is easy (using descent or canonical
heights) to write T̂ = mŜ. Reducing modulo p solves
the ECDLP.
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Global Nontorsion Lifts — The Easy Lifting Method

The Easy Lifting Method — An Example

We work with the curve and points

E : Y 2 = X3 + 23X + 11 modulo 257

S = (7, 1) ∈ E(F257) and T = (110, 15) ∈ E(F257).

We write a lift Ê as

Ê : Y 2 = X3 + (23 + 257α)X + (11 + 257β).

Substituting in S = (7, 1) and T = (110, 15) yields two
equations for α and β. Solving gives

Ê : Y 2 = X3 − 1330433
103 X + 9277805

103

Ŝ = (7, 1) ∈ Ê(Q) and T̂ = (110, 15) ∈ Ê(Q).

(Un)fortunately, the points Ŝ and T̂ are linearly inde-
pendent in Ê(Q), so we cannot use them to solve the
ECDLP for S and T .
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Global Nontorsion Lifts — The Easy Lifting Method

The Easy Lifting Method in General

In general, we can lift many random linear combinations

Qi = aiS − biT for i = 1, 2, . . . , r.

Note that if we can find any linear relationship

n1Q1 + n2Q2 + · · · + nrQr = O,

then we can probably solve the ECDLP using

(n1a1 + · · · + nrar)S = (n1b1 + · · · + nrbr)T.

A general cubic form F (X,Y, Z) = 0 has 10 coefficients,
so we can use linear algebra lift E and up to 9 points,

Q̂1, Q̂2, . . . , Q̂9 ∈ Ê(Q).

If rank Ê(Q) ≤ 8, then we can use descent or height
methods to find a linear relation among the Qi and
solve the ECDLP.
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Global Nontorsion Lifts — The Easy Lifting Method

The Obstacle to the Easy Lifting Method

Theorem. (Masser) Let EU be a parameterized fam-
ily of elliptic curves, where U = (U1, . . . , Un), and
let Q1,U , . . . , Qr,U be parameterized families of points
that are linearly independent. Then{

u ∈ Qn : Q1,u, . . . , Qr,u are dependent in Eu(Q)
}

is a small set (set of density 0).

If we view the coefficients of the elliptic curve as being
the parameters, then the precise statement of Masser’s
theorem suggests that the probability that lifted points
are linearly dependent is less than 1/p.

We might try choosing the lifted curve carefully to “en-
courage” it to have small rank (e.g., using a heuristic
suggested by the Birch–Swinnerton-Dyer conjecture),
but one can show that the lifted points still tend to
be independent.
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Global Nontorsion Lifts — The Hard Lifting Method

Global Nontorsion Lifts — The Hard Lifting Method

In the Hard Lifting Method, we lift the curve E and
(say) one point S to get a curve Ê/Q and a point
Ŝ ∈ Ê(Q). There is a reasonably good chance that

rank Ê(Q) = 1 and Ê(Q) mod p = E(Fp).

In particular, there is a point T̂ ∈ Ê(Q) that is a lift
of T , and Ŝ and T̂ are linearly dependent. Note that if
we can find T̂ , then it is easy (using descent or heights)
to compute a relation

aT̂ = bŜ.

Reducing modulo p gives a relation

aT = bS

in E(Fp) that generally solves the ECDLP for S and T .
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The Hard Lifting Method — An Example

We work with the curve and points

E : Y 2 = X3 + 23X + 11 modulo 257

S = (7, 1) ∈ E(F257) and T = (140, 71) ∈ E(F257).

We lift E and S so that Ŝ ∈ Ê(Q),

Ê : Y 2 = X3 + 23X − 503, S = (7, 1) ∈ Ê(Q).

The problem is how to lift T to Ê(Q). Even if we know
that a lift exists, there is no known algorithm to find T̂ .

Here is the answer, which is not so easy to find!

T̂ =
(

62394310869880049863559
8736078981416085105625 , 4130665692373765369756729240437877

816535042394749261677147624171875

)
.

And we are lucky that T̂ is so uncomplicated(!), since it
turns out that T̂ = 5Ŝ. If instead, say, T = 53S, then
the coordinates of T̂ would have thousands of digits.
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The Obstacle to the Hard Lifting Method

Suppose that we lift E/Fp and S ∈ E(Fp) to Ê/Q
and Ŝ ∈ Ê(Q), and suppose that we know that there
does exist a lift of T to T̂ ∈ Ê(Q).
We are searching for m satisfying T = mS, where in
general m = O(p). The lift will satisfy T̂ = mŜ, so the
theory of canonical heights tells us

ĥ(T̂ ) = ĥ(mŜ) = m2ĥ(Ŝ).

It takes O
(
ĥ(T̂ )

)
bits to write down the coordinates

of T̂ , so we find that it takes O(p2) bits to even write
down the point T̂ . This is infeasible for cryptographic
size primes p ≈ 2160.
And even if we could solve this storage problem, there
is no known way to find T̂ without knowing m. (But
might we “describe” T̂ without writing it down explic-
itly? No one knows how!)
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Global Nontorsion Lifts — The Hard Lifting Method

Summary

We have outlined four lifting methods for ECDLP:

Local-Nontorsion: Lift to nontorsion points in Ê(Qp)

Fails because lose the relationship T̂ = mŜ.

Local-Torsion: Lift to torsion points in Ê(Qp)tors

T̂ = mŜ true. Fails because cannot determine m.

Global-Torsion: Lift to points in Ê(Q)tors or Ê(K)tors
Fails since E(Q)tors is too small, [K : Q] is too large.

Global-Nontorsion: Lift to nontorsion points in Ê(Q)
Easy Lift Method :

Fails because lifted points are independent.
Hard Lift Method :

Fails because no method known to lift points.
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Addendum on Function Fields

Question asked at the conference: What hap-
pens if rather than lifting to Q or a number field, we
instead lift to a function field such as Fp(T )?

Answer: The field Fp(T ) and its finite extensions are
also global fields, and its completions are local fields.
There are thus lifting methods for function fields analo-
gous to those for Q and its extensions; and each of the
four function field lifting scenarios fails for essentially
the same reasons as does its number field counterpart.
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