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Introduction

In this paper I will briefly summarise a few of the existing models for the behaviour
of fluid flow and vortices near sharp-edged boundaries. I will focus my attention to the
case of an inviscid fluid, for which there are two approaches I would like to consider.
Johnson and McDonald (2004) used Hamiltonian methods to determine the dynamics
near a gap in an infinitely long impermeable wall, however, this model does not account

for a singularity in the velocity field at the tips of the boundaries of the order (z − a)−
1

2 ,
as z → a (if a is the position of the tip). Therefore, it is necessary to impose the Kutta
condition, that there must be finite velocity at the tip of the plate. By observation
it is noted that for high Reynolds number flow past a sharp edge, a boundary layer
is shed from the tip and takes the form of a vortex sheet whose trailing end rolls up
into a spiral. You can witness this every time you turn a tea spoon in a mug of coffee
or a kayak paddle in a river. Unfortunately the many attempts at mathematically
modeling vortex sheets have revealed the unyielding nature of the complexities of the
problem (Baker, 1980). However, using the Kutta condition and a conservation of
momentum law, Brown and Michael (1954) derived an inviscid model for this viscous
effect. An inviscid model is suitable considering a slender body because there are only
viscous effects very close to the body and in the vortex shedding itself. They simulated
the curled up sheet as a point vortex with unsteady circulation centered at the core
of the spiral, and the vortex sheet itself as a branch cut in the complex plane which
continuously feeds vorticity to the point vortex and over which there is a discontinuous
jump in pressure. Cortelezzi (1995) used this method to derive an exact solution for
the unsteady separated flow past a semi-infinite plate.

Chapter 1 will cover the derivation of the dynamics and equations that will be used
throughout the paper. Chapter 2 will summarise the work of Johnson and McDonald
(2004) on the gap problem, Chapter 3 will look at applications of the Brown-Michael
model to flows past a semi-infinite plate. Chapters 4 and 5 will apply the same model
to the case of gap in an infinite wall and a wedge of arbitrary angle.
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Chapter 1

General Dynamics

The analysis of the problems in this paper will be in 2-dimensions and therefore it
will be convenient to make use of the complex plane. In 2-dimensional inviscid fluid
dynamics complex analysis is an invaluable tool. The domains to be investigated are
non-trivial, that is to say, one cannot simply write down the complex velocity poten-
tials using the method of images so that the impermeability boundary condition is
satisfied on the wall, vn = 0, where vn is the velocity of the fluid in the normal di-
rection to the wall. However, a conformal map from the physical plane to the upper
half plane, otherwise known as the mathematical plane, allows us to find the complex
velocity potential with considerable ease, for the image vortices are then simply the
conjugate positions of the original vortices. Once the dynamics have been derived for
the mathematical plane, one need only map the solution back to the original domain.

1.1 Hamiltonian Dynamics

The first approach to determining vortex dynamics is by constructing the vortex
Hamiltonian. A useful tool for finding vortex trajectories is the Kirchoff-Routh func-
tion, Ψ (Saffman, 1995). For a system of N vortices at positions, zj with circulations
Γj, for j = 1, . . . N , it is defined as:

Ψ =
1

2

N∑

j 6=k

ΓjΓkG (zj, zk) +
1

2

N∑

j=1

Γ2
jG

(j)
H (zj), (1.1)

where GI (z, zj) = G (z, zj) + G
(j)
H (z, zj) is the Green’s function of the first kind, con-

stituting of the freespace Green’s function G and the harmonic function GH . The first
term of Ψ is the energy due to vortex-vortex interactions, whereas the second term is
the energy of the vortices interacting with their images due to the boundary. In the
specific case of N = 1, Ψ is also known as the Kirchoff-Routh Path function and at
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constant values gives vortex trajectories. For N ≥ 1, we can derive the equations of
motion,

Γj (uj − ivj) =
∂Ψ

∂yj
+ i

∂Ψ

∂xj
. (1.2)

Therefore, if we define the phase-space coordinates,

qi =
√

|Γi|sgn (Γi) xi, (1.3)

pi =
√

|Γi|sgn (Γi) yi, (1.4)

we find that the Kirchoff-Routh function is in fact the Hamiltonian for the system:

Ψ = H(q,p) = H(z) ; z = (qi, . . . , qN ; pi, . . . , pN) , (1.5)

since the real and imaginary parts of (1.2) yield the Hamiltonian equations of motion.
If the conformal map z = Z(ζ) is such that Z : Ω → Ω

′

, and H
′

is the Hamiltonian for
the system in Ω

′

, then we can find the Hamiltonian in Ω (Saffman, 1995) as,

H = H
′

+
N∑

j=1

κ2j

4π
log |Z ′ (ζj) |. (1.6)

The relationship between the Hamiltonian and the streamfunction ψ for a system of
N vortices is,

H (ζ1, . . . ζN) =
N∑

j=1

Γjψ (zj). (1.7)

1.2 Derivation of the Brown-Michael Equation

The fundamental element of this paper is the model which Brown and Michael used
to simulate vortex shedding (1954). Originally they were trying to come up with a

Figure 1.1: Taken from Brown. (1954)
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Figure 1.2: Contour integral around the point vortex and its connecting cut, where α is the angle the line
vortex makes with the horizontal and we take the limit as ǫ→ 0.

simple model for analysing the effect of separated vortex sheets on the lift of a delta
wing. In high Reynolds-number flow, conical vortex sheets can be observed to shed
from the edge of a delta wing, with apex at the tip and base at the trailing edge.
Across these sheets there is a large jump in the pressure and velocity of the fluid. The
base of one of these vortex sheets is connected to the edge of the wing and its trailing
edge curls up into a spiral. The sheet has variable shape and strength and continuously
feeds vorticity to the spiral. In general it is thin and has relatively low circulation away
from the spiral itself (see the assumed flow field in figure (1.1)).
By taking a 2-dimensional slice perpendicular to the axis of the delta wing, Brown
and Michael (1954) developed an ingenious method for modeling this effect. In the
2-dimensional slice, in place of a curling vortex sheet we see a line vortex which begins
at the wing edge and curls up into a spiral away from it. Given the thin and weak
nature of the vortex sheet away form the spiral, they approximated this 2-dimensional
system by a straight line vortex of negligible width connecting a point vortex to the
tip of the plate, where the point vortex corresponds to the spiral and is centered at
its core. The thin line vortex corresponds to the part of the vortex sheet which is
not in the spiral (See figures (1.1) and (1.2)). It continuously feeds vorticity to the
point vortex which is given variable strength and position. Along the thin line vortex
there is a discontinuity in velocity and pressure, however, as a condition they imposed
that the integral of pressure around the system must be zero. This translates to the
condition that there must be zero net force on the point vortex and its connecting cut.
Representing this model in the complex plane we would take a contour integral around
the vortex system and apply Newton’s second law. A second physical constraint is the
so-called Kutta condition which states that the velocity at the trailing edge of a solid
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body must be finite. We will use this condition throughout the paper to determine an
equation for the unknown circulation of a shed vortex as a function of time.
We now outline the derivation of the equations of motion for a point vortex connected
to the sharp edge of a solid body by a line vortex of negligible width along which
there is a discontinuity in pressure (Llewellyn-Smith, 2009). If a fluid has velocity field
u = (u, v), pressure p, density ρ and we take an arbitrary contour C with constant
velocity uc = (uc, vc), and normal vector n, around the point vortex and its connecting
branch, Newton’s second law becomes

dM

dt
=

∮

C

−pn dl +
∮

C

−ρu
(
u− uc

)
n dl, (1.8)

because in 2-dimensions the change of momentum M = (M1,M2) is equal to the
force on the contour from the fluid pressure plus the flux of momentum through the
contour. We can convert this vector integral equation into a single scalar integral
equation by making a change of variables to enter the complex plane. If z = x + iy,
then w = dz̄

dt = u− iv gives the velocity field. If we consider a small change in x and y
then we see that,

ndl = −dy + idx, (1.9)

and,

u.ndl = (−udy + vdx)
= 1

2 (i (u− iv) (dx+ idy)− i (u+ iv) (dx− idy))
= ℜ [iwdz]

(1.10)

Equation (1.8) gives us two integral equations, since it is a two dimensional vector, and
we add them together in the manner a+ ib to give,

dM

dt
=

∮

C

−ip dz +
∮

C

−ρ (u+ iv)ℜ [i (w − wc) dz], (1.11)

whereM =M1+ iM2 and wc = uc− ivc. If F represents the complex velocity potential
for this flow, then Bernoulli’s equation for the pressure is,

p = p0(t)−
1

2
ρ

(
∂F

∂t
+
∂F̄

∂t
+ ww̄

)

, (1.12)

where p0 is some analytic function of time and a bar represents the complex conjugate.
Imposing the condition that the total force, or change of momentum, is zero and
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substituting (1.12), we get,

iρ

2

(∮

C

(
Ft + F̄t

)
dz +

∮

C

wcw̄ dz +

∮

C

w̄ (w̄ − w̄c) dz̄

)

= 0

⇒ iρ

2







∮

C

(
Ft + F̄t

)
dz

︸ ︷︷ ︸
a

−
(∮

C

w̄cw dz̄

)

︸ ︷︷ ︸

b

−
(∮

C

w (w − wc) dz

)

︸ ︷︷ ︸
c







= 0.

(1.13)

Now, if we let

w (z) =
Γn

2πi (z − zn)
+ w̃ (z) , (1.14)

F (z) =
Γn

2πi
log (z − zn) + F̃ (z) , (1.15)

where zn is the position of the point vortex with circulation Γn and both w̃ and F̃ are
analytic in C. It should be noted that the log (z − zn) term in the complex velocity
potential is singular at z = zn and therefore we make a branch cut along the connecting
line and continue it along the sharp edge to −∞. First, we see that,

a =
iρ

2

∮

C

(

Γ̇n

2πi
log (z − zn)−

Γnżn

2πi (z − zn)
+ conjugate

)

dz

=
iρ

2

∮

C

(

2ℜ
[

Γ̇n

2πi
log (z − zn)

]

− Γnżn

2πi (z − zn)

)

dz

=
iρΓ̇n

2π

∮

C

ℜ [−i log (z − zn)]dz−
iρΓnżn

2
,

(1.16)

where a dot represents differentiation with respect to time. Now, let C be comprised
of the three contours shown in figure (1.2), which are parameterised as follows:

C1 : z = zn0
+ reiα : r ∈ [0, |zn − zn0

|]
C2 : z = zn + ǫeiθ : θ ∈ [0, 2π]

C3 : z = zn0
+ rei(α+2π) : r ∈ [|zn − zn0

|, 0]
(1.17)

where C3 must be parameterised with angle α+2π since we are going around a branch
cut. If we take the limit as ǫ → 0, and use the Cauchy integral formula for a closed
contour containing z0,

f (n) (z0) =
1

2πn!

∮
f (z)

(z − z0)n+1
dz, (1.18)

along with the fact that very close to zn, the contour velocity wc is roughly the speed
of the vortex itself ˙̄zn, we can determine the various components of a by considering
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the contours which comprise C, since
∮

C

=

∮

C1

+

∮

C2

+

∮

C3

. (1.19)

Firstly, for C1, we find,

lim
ǫ→0

∮

C1

2ℜ
[

Γ̇n

2πi
log (z − zn)

]

dz

=
Γ̇n

π

∫ |zn−zn0 |

0

arg
(
(r − |zn − zn0

|) eiα
)
eiα dr

=
Γ̇n

π
α (zn − zn0

) .

(1.20)

For C2, we get

lim
ǫ→0

∮

C2

=
Γ̇n

π
lim
ǫ→0

∫ 2π

0

arg
(
ǫeiθ
)
iǫ dθ = 0. (1.21)

Similarly to C1, we find the integral along C3 to be

lim
ǫ→0

∮

C3

= −Γ̇n

π
(2π + α) (zn − zn0

) . (1.22)

Therefore, we find

a = −iρ
2
Γnżn − iρΓ̇n (zn − zn0

) . (1.23)

We find that b = 0 because w̄ = − Γn

2πi(z̄−z̄n)
+ ¯̃w is analytic inside C. Now, let’s consider

integral c,

c = −
(
iρ

2

∮

C

w2 dz− iρ

2
wc

∮

C

w dz

)

. (1.24)

However, we know by (1.18) that any square terms of w2 will integrate to give zero so
we are left with,

c = −
(
iρ

2

∮

C

2w̃nΓn

2πi (z − zn)
dz− iρ

2
wcΓn

)

= iρ ¯̃wnΓn −
iρ

2
żnΓn.

(1.25)

Therefore, (1.13) gives,

− iρ
(

żnΓn + Γ̇n (zn − zn0
)− ¯̃wnΓn

)

= 0, (1.26)

or, taking the complex conjugate,

dz̄n

dt
+

1

Γn

dΓn

dt
(z̄n − z̄n0

) = w̃n. (1.27)
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Where in fact,

w̃n = w − Γn

2πi (zn − zn0
)
= lim

z→zn

d

dz

[

F − Γn

2πi
log (z − zn)

]

. (1.28)

Now, if we let the vortex have circulation of the opposite sign, Γ̂n = −Γn, which makes
no difference since the sign of Γn is arbitrary, we arrive at the final equation of motion,

dz̄n

dt
+

1

Γ̂n

dΓ̂n

dt
(z̄n − z̄n0

) = lim
z→zn

d

dz

[

F − iΓ̂n

2π
log (z − zn)

]

, (1.29)

which henceforth I will refer to as the Brown-Michael Equation.

It should also be noted that the equation of motion for a vortex at zj, with constant
circulation Γj is given by taking the limit of the derivative of the complex velocity
potential without the vortex itself, which is identically w̃j:

dz̄j

dt
= uj − ivj = lim

z→zj

d

dz

(

F − iΓj

2π
log (z − zj)

)

. (1.30)

In the Brown-Michael model, the point vortex is given circulation which depends on
time and this dependence gives rise to an extra term in the equation of motion.
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Chapter 2

Flow without the Kutta Condition

In this chapter, we will neglect the Brown-Michael model and investigate vortex tra-
jectories using Hamiltonian dynamics.

2.1 Gap in a Wall

Johnson and McDonald (2004) investigated the case of a gap in an infinitely long
wall. This domain consists of one solid boundary at ℑz = 0,ℜz ≤ 1 and another at
ℑz = 0,ℜz ≥ 1. We will make the following conformal map from the upper half of the
mathematical ζ-plane to the physical z plane:

z =
1

2

(

ζ +
1

ζ

)

, ζ = z +
(
z2 − 1

)1/2
, (2.1)

where we choose the branch of the square root that has positive imaginary part. The
gap in the z-plane maps to the unit semicircle in the upper half of the ζ-plane, while
the boundaries map to the line ℑζ = 0. To help envisage the form of the Hamiltonian
(1.1) for N vortices in the ζ-plane, let us first take the simple case of two vortices at
positions ζ1 and ζ2, with strengths Γ1 and Γ2, respectively. There are two image vortices
located at ζ̄1 and ζ̄2 with strengths −Γ1 and −Γ2 respectively. The streamfunction for
this flow at ζ1 is:

ψ (ζ1) = −Γ2

4π
log

∣
∣
∣
∣

ζ1 − ζ2

ζ1 − ζ̄2

∣
∣
∣
∣
+

Γ1

4π
log
∣
∣ζ1 − ζ̄1

∣
∣

= Γ2G (ζ1, ζ2) + Γ1G
(1)
H (ζ1) .

(2.2)

Given the apparent form of the Greens functions, we can write down the Hamiltonian
for a system of N vortices using (1.1),

H (ζ1, . . . ζN) = − 1

4π

N∑

i 6=j

ΓiΓj log

∣
∣
∣
∣

ζi − ζj

ζi − ζ̄j

∣
∣
∣
∣
+

1

4π

N∑

i=1

Γ2
i log |2ℑζi|. (2.3)
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Figure 2.1: z-plane
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Figure 2.2: ζ-plane, where the dashed line represents
the gap under the mapping

We know the derivative of the conformal map, F ′(ζ) = 1
2

(
1− ζ−2

)
, and so, from (1.6),

the Hamiltonian in the physical plane is,

H (z1, . . . zN) = − 1

4π

N∑

i 6=j

ΓiΓj log

∣
∣
∣
∣

ζi − ζj

ζi − ζ̄j

∣
∣
∣
∣
+

1

4π

N∑

i=1

Γ2
i log

∣
∣ℑζi

(
1− ζ−2

i

)∣
∣. (2.4)

In the case N = 1, the Hamiltonian is also the Kirchoff-Routh path function. It is so
called because at constant values it gives the vortex trajectories. In this case, the first
term of (2.4) is zero, and therefore the trajectories of this vortex are given by,

∣
∣ℑζ

(
1− ζ−2)

)∣
∣ = const. (2.5)

As we take the limit ζ → ∞,

ζ → x∞ + iy∞ +
(

(x∞ + iy∞)2 − 1
) 1

2 → 2 (x∞ + iy∞) , (2.6)

and therefore,
∣
∣ℑζ

(
1− ζ−2)

)∣
∣→ 2y∞. (2.7)

As seen in figure (2.3), the dividing trajectory, also called the separatrix, which defines
whether the vortices skim over the gap or pass through it goes through the origin of
the z-plane z = 0 → ζ = i. Therefore y∞ = ±1, implying that if the vortex begins
closer than half of the distance of the gap from the barrier, then it will pass through.
Otherwise, it will skim across it.
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Figure 2.3: Vortex trajectories for various initial
conditions without background flow.
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Figure 2.4: Superimposing a uniform stream in
the positive x direction, α = 1, we drive vor-
tices which start in the upper half plane across
the gap, whereas the ones which slip through
are pushed backwards.
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Figure 2.5: Vortex trajectories for various initial conditions near a single sharp edge with a uniform flow
α = 1.
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2.2 Background Flow

Let us now consider a background flow superimposed on the current model with com-
plex velocity potential,

F (z) = αz. (2.8)

This corresponds to a uniform stream of strength α in the positive x-direction, where
z = x+ iy. The Hamiltonian for this background flow is,

H =
N∑

i=1

Γiψ (zi) =
N∑

i=1

Γiℑ (F (zi)), (2.9)

so for the entire system we have,

H (z1, . . . zn) = − 1

4π

N∑

i 6=j

ΓiΓj log

∣
∣
∣
∣

ζi − ζj

ζi − ζ̄j

∣
∣
∣
∣
+

1

4π

N∑

i=1

Γ2
i log

∣
∣ℑζi

(
1− ζ−2

i

)∣
∣

+
N∑

i=1

Γiαy.

(2.10)

Or in the N = 1 case,

H (z) =
1

4π
Γ2 log

∣
∣ℑζ

(
1− ζ−2

)∣
∣+ Γαy. (2.11)

We find the vortex trajectories at lines of constant H and the results can be seen in in
figure (2.4).

2.3 Near the Edge

Now let us examine the flow very close to the edge of one of the walls, and we will choose
the right hand wall without loss of generality. It is sufficient to consider this barrier
alone, ignoring the interference of the other because at sufficiently close distances to
the right wall, the effect of the left wall is negligible. The domain is therefore the
z-plane with a single solid barrier at ℜz > 0,ℑz = 0. A suitable conformal map from
the mathematical plane is

ζ =
√
z. (2.12)

The Hamiltonian is therefore,

H (z1, . . . zn) = − 1

4π

N∑

i 6=j

ΓiΓj log

∣
∣
∣
∣

√
zi −√

zj√
zi −

√
z̄j

∣
∣
∣
∣
+

1

4π

N∑

i=1

Γ2
i log |4

√
ziℑ

√
zi|, (2.13)
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or in the N = 1 case,

H (z) =
1

4π
Γ2 log

∣
∣4
√
zℑ

√
z
∣
∣ = Γψ (z) . (2.14)

Therefore, if we let z = reiθ, from (1.7) the streamfunction is

ψ (z) =
Γ

8π
log |

√
zℑ

√
z|2 + C

=
Γ

8π
log |

√
r

(√
r sin

θ

2

)

|2 + C

=
Γ

8π
log

r2

2
(1− cos θ) + C

=
Γ

8π
log
(

x2 + y2 − x
(
x2 + y2

)1/2
)

+ A,

(2.15)

where A and C are constants. Superimposing the background uniform flow with α = 1,
and altering the dimensions x and y appropriately, we find the vortex trajectories at
lines of constant

ψo = y + log
(

x2 + y2 − x
(
x2 + y2

)1/2
)

. (2.16)

We can see the results in figure (2.5).

Several variations of the vortex near a sharp edge problem have now been investi-
gated, however, we have completely ignored a very important complication which is
fundamental to this problem. The behaviour of the fluid near to the edge itself is
problematic because the velocity field for the flow becomes singular at the plate tips.
Therefore, we must introduce a new model altogether, imposing the Kutta condition
at the tips and solving the Brown-Michael equation for the vortex positions.
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Chapter 3

Separated Flow past a Semi-Infinite Plate

Here we will look at a variety of flow cases past a semi-infinite plate using the Brown-
Michael model (1954).

3.1 Cortelezzi Problem

First, following the method of Cortelezzi, we will explore the effects of an unsteady
flow U(t) past the plate. The boundary will be represented by ℑz = 0,ℜz < 0. We use
the Brown-Michael model for the viscous effect of a separated boundary layer which
rolls up into a spiral. A point vortex will represent the spiral and will be connected
to the tip by a vortex sheet of negligible width. The vortex will change position and
circulation over time due to its being continuously fed vorticity by the tip.

3.1.1 Conformal Map, Equations of Motion and Exact Solution

The conformal map from the upper half, or mathematical ζ-plane, to the physical
plane, z = −ζ2, ζ = i

√
z, allows us to find the complex velocity potential in the

U(t) 

Figure 3.1: Unsteady flow past a semi-infinite plate in the physical z-plane
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ζ-plane using the method of images,

F (ζ, t) = U(t)ζ +
iΓ (t)

2π
log

ζ − ζ1 (t)

ζ − ζ̄1 (t)
, (3.1)

where ζ1 is the position of the shed vortex with circulation Γ (t), and ζ̄1 represents its
conjugate position, corresponding to the image vortex in the ζ-plane. The image is
necessary so that the impermeability condition vn = 0 on the wall is satisfied, where
vn is the velocity in the normal direction to the wall.
The velocity field for the fluid in the ζ-plane is therefore,

u− iv =
dF

dζ
= U (t) +

iΓ (t)

2π

(
1

ζ − ζ1 (t)
− 1

ζ − ζ̄1 (t)

)

. (3.2)

Imposing the Kutta condition at the tip,

dF

dz
=
dF

dζ

dζ

dz
= finite, ζ = z = 0, (3.3)

we know that dζ
dz = − 1

2ζ → ∞, ζ → 0, so we must have dF
dζ = 0, ζ = 0. Thus, we

can derive a formula for the circulation of the shed vortex using (3.2),

Γ1 (t) = 2πiU (t)
ζ1ζ̄1

ζ1 − ζ̄1
= πU (t)

( |ζ1|2
ℑζ1

)

. (3.4)

Letting the vortex begin at the tip of the plate such that z (0) = 0 we can rewrite
(1.29) for this system in terms of ζ. We find the limit in the right hand side of the
equation using L’Hopital’s rule and (3.4) and arrive at,

dζ̄1

dt
− 1

2
ζ̄1

( |ζ1|2
ℑζ1

ℑ
[
1

ζ21

dζ1

dt

])

= − U̇

2U
ζ̄1 −

U

4|ζ1|2
(

1− |ζ1|2
4ℑζ1

(
i

ζ1
+

1

ℑζ1

))

, (3.5)

where a dot represents differentiation with respect to time. Converting to polar coor-
dinates, ζ1 = r1e

iθ1, ζ̄1 = r1e
−iθ1, (3.5) becomes

3

2
ṙ1 − ir1θ̇1 −

1

2
r1θ̇1 cot θ1 = −r1U̇

2U
+

U

4r21

(

eiθ1 − 1

4 sin θ1

(

i+
eiθ1

sin θ1

))

. (3.6)

We find the real and imaginary parts to be:

ℜ : 3
2 ṙ1 − 1

2r1θ̇1 cot θ1 = −r1U̇
2U + U cos θ1

16r2
1
sin2 θ1

(1− 2 cos 2θ1)

ℑ : −r1θ̇1 = −U cos 2θ1
8r2

1
sin θ1

, (3.7)

which give us the equations of motion:

θ̇1 =
U cos 2θ1
8r31 sin θ1

, ṙ1 =
U cos θ1
12r21

− r1U̇

3U
, (3.8)
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with initial conditions,

r1 (0) = 0, θ1 (0) = θ0 ∈ (0, π) , (3.9)

since the vortex must start somewhere in the upper half plane. It is observed that
(3.8) is a pair of ordinary differential equations which are singular at the initial value
of r1. To solve them, it is necessary to make another change of variables proposed by
McLaughlin et al. (1986):

α = Ur31, β = cos θ1, t̃ =

∫ t

0

U 2
(
t̂
)
dt̂. (3.10)

Then (3.8− 3.9) become,

dα

dt̃
=
β

4
,

dβ

dt̃
=

1− 2β2

8α
,

α (0) = 0, β (0) = β0 ∈ (−1, 1) .

(3.11)

They combine to give,
d2

dt̃2

(
α2
)
=

1

16
, (3.12)

and, then we can solve to get,

α = ± t̃

4
√
2
, β = ± 1√

2
, (3.13)

where α = Ur31 is positive or negative depending on the sign of U (t). Furthermore,
the sign of β must always match that of α. In polar coordinates,

r1 =

(
1

4U
√
2

∫ t

0

U 2
(
t̂
)
dt̂

) 1

3

, (3.14)

θ1 =

{
π
4 U > 0,
3π
4 U < 0,

(3.15)

and therefore, if we assume U > 0,

ζ1 =
√
i

(
1

4U
√
2

∫ t

0

U 2
(
t̂
)
dt̂

) 1

3

. (3.16)

Hence, the position of the point vortex in the physical plane is,

z1 (t) = −ζ21 = −i
(

1

4U
√
2

∫ t

0

U 2
(
t̂
)
dt̂

) 2

3

. (3.17)

Clearly z1 is purely negative and imaginary, meaning that as time progresses, the
vortex will move purely in the negative imaginary direction, perpendicular to the plate.
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However, if we were to change the sign of U such that α became negative, then we
would get,

z1 (t) = i

(
1

4U
√
2

∫ t

0

U 2
(
t̂
)
dt̂

) 2

3

. (3.18)

Consequently the vortex would move purely in the positive imaginary direction, per-
pendicular to the plate.

3.1.2 Stability

It is of interest to ascertain whether these trajectories are stable. If we let and θ1 =
θ0 + ξ (t), where 0 < ξ ≪ 1 and θ0 is either π

4 or 3π
4 depending on the sign of U , then

(3.8) becomes,

ξ̇ ≈ −ξ|U |
√
2

4r31
, (3.19)

so ξ decays exponentially with time implying that the trajectories are stable.

3.1.3 Cirulation Analysis

The circulation can now be found from (3.4),

Γ1 (t) = πU

(
1

2U

∫ t

0

U 2
(
t̂
)
dt̂

) 1

3

, (3.20)

and consequently, the rate of circulation,

dΓ1

dt
=
π

3
U

(

− U̇

2U 2

∫ t

0

U 2
(
t̂
)
dt̂+

U

2

)(
1

2U

∫ t

0

U 2
(
t̂
)
dt̂

)− 2

3

+πU̇

(
1

2U

∫ t

0

U 2
(
t̂
)
dt̂

) 1

3

=
π

3
U

(

U̇

∫ t

0

U 2
(
t̂
)
dt̂+

U 3

2

)(
U 2

2

∫ t

0

U 2
(
t̂
)
dt̂

)− 2

3

.

(3.21)

Notice how a change in sign of dU
dt could cause a change of sign in the rate of circulation,

which is wholly unphysical because the vortex is being continually fed by the shedding
of vorticity at the tip. The Brown-Michael model (1954) imposes the condition that if
this should happen at time ts, then the circulation for that vortex will remain constant
Γ1(t) = Γ1(ts), ∀t > ts and a new vortex must begin at the tip. Henceforth this will
be referred to as a circulation event. Then we get,

dU

dt
(ts) = −1

2
U 3 (ts)

(∫ ts

0

U 2
(
t̂
)
dt̂

)−1

. (3.22)
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For t < ts, however, the freestream velocity must be a function whose magnitude is
monotonically increasing with time for the model to be physically valid. Let us assume
that such an event does not take place lest the new vortex-vortex interaction complicate
the dynamics, for I will investigate this later. Then our exact solution tells us that
a vortex is shed from the tip and moves perpendicular to the plate with circulation
increasing in magnitude.

3.1.4 Rescaling

Let us rescale our variables in following manner:

ẑ1 = z1, t̂ =
1

U

∫ t

0

U 2
(
t́
)
dt́, Û = 1, Γ̂1 =

Γ1

U
, (3.23)

such that equations (3.20) and (3.17) become,

Γ̂1 = π

(
t̂

2

) 1

3

, ẑ1 = −i
(

t̂

4
√
2

) 2

3

. (3.24)

Then the rate of circulation becomes,

dΓ̂1

dt̂
=

1

U 2

(

Γ̇1 −
Γ1

U
U̇

)(

1− 1

U 3
U̇

∫ t

0

U 2
(
t́
)
dt́

)−1

=
π

3 · 2 1

3 t̂
2

3

,

(3.25)

so our new set of equations are completely independent of U . Notice how (3.24− 3.25)
are equivalent to the case where U = 1. Therefore, the solution is universal in the
sense that 3.24 is valid for any choice of U , under a suitable rescaling.
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3.2 Tide Problem

In this problem we will investigate the case of an oscillating flow U = sin t past
a semi-infinite plate with continuously shed vorticity from the tip. This is not too
dissimilar from a periodic tide which moves backwards and forwards past a harbour
wall or peninsula, shedding vorticity as it moves. With the same Brown and Micheal
point vortex model as before, we find that as long as the circulation of the shed vortex
does not reach a stationary point, the vortex will move with the stream away from and
perpendicular to the plate. However, a change in the sign of dΓ1

dt will violate the Brown-
Michael model, forcing the original vortex to maintain constant circulation and a new
one to be generated from the tip of the plate with variable circulation, continuously
fed by a vortex sheet of negligible width. If the rate of change of circulation of the
second vortex then changes sign, we must repeat the process. Here we will investigate
the problem up to five changes of sign, that is, up until there are five vortices and we
stop the system when there is a circulation event for the fifth vortex.

3.2.1 Equations of Motion

Given N vortices of strength Γi at positions ζi with images at ζ̄i in the mathematical
plane, the complex velocity potential is,

F (ζ, t) = sin (t) ζ +
N∑

i=1

iΓi

2π
log

(
ζ − ζi

ζ − ζ̄i

)

, (3.26)

where, in this model, only the most recently shed vortex has time-dependance and is
found using the Kutta condition at ζ = 0. All other vortices have constant, given
circulation. If the i’th vortex is released at time ti and moves with variable circulation

U(t) = 
Sin(t)

Figure 3.2: Physical z-plane depicting an oscillating flow past a semi-infinite plate.
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Figure 3.3: Rates of Circulation for consecutive vortices

until time ts, after which it remains constant, it can be shown that

Γi (t) =







0 t < ti
π|zi|2
ℑzi

(

sin t−
∑i−1

j=1
Γjℑzj
π|zj |2

)

ti ≤ t ≤ ts

Γi (ts) t > ts

(3.27)

The corresponding rate of change of circulation can be shown to be

dΓ1

dt
=







0 t < ti

4π
(

1
ζ̄i
− 1

ζi

)−2

ℑ
[

1
ζ2i

dζi
dt

] (

sin t−
∑i−1

j=1
Γjℑzj
π|zj |2

)

+π|zi|2
ℑzi

(

cos t−∑i−1
j=1

Γj

π ℑ
[

1
z2j

dzj
dt

])

ti ≤ t ≤ ts

0 t > ts

(3.28)

We use (1.29) with initial position zi0 = ζi0 = 0 for a vortex with variable circulation
and (1.30) for a vortex with constant circulation. Hence, at any point in time when
there are k vortices in the fluid, we have one differential equation of the form of (1.29)
and k − 1 differential equations of the form (1.30). If each vortex has position ζi =
ξi + iηi, then we can split each differential equation into real and imaginary parts,
yielding 2k equations for 2k unknowns (ξ1, . . . , ξk, η1, . . . , ηk).
We solve these coupled equations numerically until they break down at a certain time
due to a circulation event for the most recently shed vortex. Then we solve the next
set of equations with the initial conditions for the existing vortices as their terminal
conditions in the former setting. This continues for as long as we like and in fact, a
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Figure 3.4: Circulations of consecutive vortices

new vortex is shed within every period of the oscillation of the flow U = sin t.
figure (3.3) shows the evolution of the rates of circulation for each consecutive vortex,
whereas figure (3.4) depicts the circulations themselves. It is interesting to note that
while the sign of the circulation of consecutive vortices alternates, their strengths are
not in monotone sequence. The numerical solution gives us the trajectories of the
vortices in the mathematical plane but these trajectories are of course no use to us.
However, it is possible to map the numerical solution back to the physical z-plane,
where zi = xi + iyi using the transform,

xi = −η2i + ξ2i , yi = −2ηiξi, (3.29)

The results can be seen in figure (3.5). The vortices behave quite unexpectedly, pair-
ing up with each other in turn like partners in a waltz. At first, when U is positive and
increasing, the first vortex departs from the tip and moves downwards perpendicular
to the plate, like in the Cortelezzi problem (1995). After a while a circulation event oc-
curs such that the first vortex henceforth maintains strength of Γ1 ≈ 2.49 and a second
vortex deploys from the tip with circulation of opposite sign to the first. Together they
form a dipole and propagate away from the tip until the second vortex has a circulation
event. Then the second vortex has constant value Γ2 ≈ −5.63 of greater magnitude
than the first and overpowers it such that they veer off to the left as a pair. In the
meantime, a third vortex is released with positive increasing circulation. Eventually
it experiences a circulation event and remains at strength Γ3 ≈ 6.97 thereafter. As a
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Figure 3.5: Vortex trajectories for the Brown-Michael model (1954) of an oscillating flow past a semi-
infinite plate.

consequence of the deployment of a fourth vortex from the tip, the first and second
vortex split up such that the first vortex begins to feel the boundary and, appearing to
pair up with its image, it travels along the wall in the left direction. The second vortex,
having opposite sign and comparable strength to the third, leaves the partnership of
the first and pairs up with the third. Seemingly permanent partners, they propagate
away from the tip as a dipole. However, their path is slightly askew in favour of the
third, owing to the its strength having slightly greater magnitude. After a time, the
fourth vortex experiences a circulation event at circulation Γ4 ≈ −3.86 and a fifth
vortex with positive circulation sets out from the tip. All other vortices are quite far
away from the tip now such that the fourth and fifth are left undisturbed to pair up as
a dipole propagating downwards in favour of the fourth, since they have opposite signs
and the fifth is slightly weaker, though growing in strength. This most recent scenario
is very similar to the first scenario, when the first and second vortices paired up. This
is not too surprising because at the introduction of the fifth vortex, the sign of U is
negative and all other vortices are reasonably far away such that the system is not too
dissimilar from the original tide problem, except with U(t) = − sin t.

3.2.2 Stability

As with Cortelezzi’s example, the ordinary differential equations for the positions of
these vortices are all singular at the tip of the plate where all the solutions begin.
Unlike before, we cannot make a suitable change of variables to absolve the singularity.
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Instead, we alter the initial position of the vortex ever so slightly from ζ1 (0) = 0 to
ζ1 (0) = 0 + 0.001i. To ascertain whether these solutions are stable, we can perturb
the initial position to ζ1 (0) = 0 + 0.0005i and ζ1 (0) = 0 + 0.002i. The three results
can be seen in figure (3.6) to converge fairly rapidly to the same trajectory. Therefore
the supposed initial condition ζ1 (0) = 0 + 0.01i seems fairly stable and therefore a
satisfactory approximation.
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Figure 3.6: Here we witness the convergence of three trajectories in the physical plane for the first
vortex of the tide problem. Each trajectory is calculated numerically with different initial conditions,
ζ1 (0) = 0 + 0.001i, 0 + 0.002i, 0 + 0.0005i.
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3.3 Starting Vortex

Here, in place of a flow past as semi-infinite plate, we investigate the flow driven by
a vortex initiated at z = −∞ + i with fixed circulation. Very far away from the tip
the vortex will be driven by its image and will propagate parallel to the plate. It is
of great interest to understand when the effects of the tip of the plate begin to take
place. In other words, we wish to know when the vortex ceases to feel an infinite wall
and begins to feel a sharp edge. Then we will ascertain the fate of the vortex after it
encounters the tip.
Without imposing the Kutta condition, a vortex at z1 with strength Γ = const which
starts near a semi-infinite plate has equation of motion, (1.30). In the ζ-plane this
becomes,

dζ̄1

dt
= − Γ

16π|ζ1|2
(
i

ζ1
+

1

ℑζ1

)

. (3.30)

If ζ1 = ξ1 + iη1, We split (3.30) into real and imaginary parts and solve the two
differential equations numerically. Mapping the solution back using (3.29), we get the
trajectories shown in figure (3.7).

A logical step is to investigate the same problem with the Brown-Michael model.
We will look at what happens when a vortex with fixed circulation begins far from a
sharp edge using precisely the same domains, notation and conformal map as in the
tide problem.

3.3.1 Conformal Map and Equations of Motion

Here we must account for the starting vortex and the consequent Brown-Michael shed
vortex. In the mathematical plane, as before, we use the method of images to work
out the complex velocity potential,

F (ζ, t) =
iΓ1

2π
log

ζ − ζ1 (t)

ζ − ζ̄1 (t)
+
iΓ2 (t)

2π
log

ζ − ζ2 (t)

ζ − ζ̄2 (t)
. (3.31)

Figure 3.7: Trajectory of vortex near a sharp edge without imposing the Kutta condition.
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where ζ1 and ζ2 are the positions of the starting vortex and the shed vortex with
circulations Γ1 = −1 and Γ2 (t), respectively, and ζ̄1 and ζ̄2 represent the conjugate
positions, corresponding to the image vortices in the mathematical plane.
We then find the velocity field to be,

dF

dζ
= u− iv =

iΓ1

2π

(
1

ζ − ζ1
− 1

ζ − ζ̄1

)

+
iΓ2 (t)

2π

(
1

ζ − ζ2
− 1

ζ − ζ̄2

)

. (3.32)

Imposing the Kutta condition at the tip, just like before, we find the circulation

Γ2 (t) = −Γ1

(
1

ζ̄1
− 1

ζ1

)(
1

ζ̄2
− 1

ζ2

)−1

= −Γ1
|ζ2|2ℑζ1
|ζ1|2ℑζ2

.

(3.33)

We use Equations (1.29) and (1.30) to find the positions of vortices 1 and 2 respectively.
The initial position of the shed vortex is at the tip of the plate, z20 = 0. It is now
possible to convert these so that they are in terms of ζ1 = η1 + iξ1 and ζ2 = η2 + iξ2.

dζ̄1

dt
=

1

4|ζ1|2
(

−iΓ1

2π

(
1

2ζ1
+

1

2iℑζ1

)

+
iΓ2

2π

(
1

ζ1 − ζ2
+

1

ζ1 − ζ̄2

))

(3.34)

−2ζ̄2
dζ̄2

dt
− ζ̄22

(

ℑ
[
1

ζ21

dζ1

dt

] |ζ1|2
ℑζ1

−ℑ
[
1

ζ22

dζ2

dt

] |ζ2|2
ℑζ2

)

= − 1

2ζ2

(
iΓ1

2π

(
1

ζ2 − ζ1
+

1

ζ2 − ζ̄1

)

− iΓ2

2π

(
1

2ζ2
+

1

2iℑζ2

))

.

(3.35)

We split these equations into real and imaginary parts, solve numerically for positions
in the mathematical plane and map the trajectories back to the physical plane using
(3.29). The results can be seen in figure (3.10). From (3.33), we can calculate the
variation in circulation of Γ2 with respect to time, and this together with the circulation
itself are plotted in figures (3.8) and (3.9). Comparing figure (3.7) to figure (3.10), we
see that the existence of a Brown-Michael vortex drastically alters the path of the
vortex. Without the shed vortex, the starting vortex moves parallel to the plate and
doesn’t ’feel’ the sharp edge until it is in close proximity. It then loops around and
travels in the reverse direction parallel to the plate. However, in the Brown-Michael
model, while the initial path of the starting vortex is similar, when it approaches the
tip of the plate it pairs up with the shed vortex, being of opposite sign and comparable
strength, and together they form a dipole which shoots off to infinity. Owing to there
being no characteristic length scale in this domain, we can deduce that no matter how
far above or below we place the starting vortex, it will never pass around the sharp
edge.
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Figure 3.8: Brown-Michael Model: Circulation of the shed vortex.

It should be noted that after a certain amount of time, the shed vortex reaches a peak
in its circulation after which it begins to decrease in strength. After this time, we
would have to deploy a new vortex from the tip and impose constant circulation on
the former, however, the two vortices have already paired up and traveled sufficiently
far away that this new vortex has little effect on their paths. We can see this in figure
(3.11).

3.3.2 Stability

Similarly to the tide problem, the equation of motion for the shed vortex (3.35) is sin-
gular at the tip and so we must replace its initial position with ζ2 (0) = 0+0.001i in the
numerical calculation. The stability of the solution can be determined by perturbing
the initial position to ζ2 (0) = 0 + 0.0005i and ζ2 (0) = 0 + 0.002i. As we can see in
figure (3.12), the convergence of the three solutions to the same trajectory was rapid,
therefore validating the stability of our solution. figure 3.13 shows the result of moving
the initial position of the starting vortex double the distance backwards to see if the
solutions vary much. Seeing that they do not, it is fair to say that our simulation gives
an accurate depiction of the behaviour of a vortex which begins at z = −∞+ i.
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Figure 3.9: Brown-Michael Model: Rate of Change of the Circulation of the shed vortex.

Figure 3.10: Brown-Michael Model: Starting Vortex begins at z = −5 + i.
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Figure 3.11: Prolonged evaluation of the system, where a new vortex is deployed from the tip and the
former two travel off barely perturbed to infinity.
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Figure 3.12: Here we witness the convergence of three solutions to the starting vortex problem in the
physical plane. The solutions were calculated in the mathematical plane, each with slightly different
initial conditions, ζ2 (0) = 0 + 0.001i, 0 + 0.002i, 0 + 0.0005i.
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Figure 3.13: Here we see that when the vortex begins even further back at z = −10 + i, we can compare
its trajectory with that of the original model in which the vortex begins at z = −5 + i and clearly
the results are marginally different, being a distance of the order 0.001 apart. Furthermore, the two
trajectories appear to be at precisely the same angle. It is obviously impossible to initiate the vortex
at z = −∞ + i but it seems that z = −5 + i as approximation to the initial position does not give an
inaccurate model.
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Chapter 4

Mind the Gap

A logical step would be to revert back to the original case of study, a gap in an
infinitely long impermeable wall, and employ the the Brown-Michael model (1954) to
a variety of flow cases.

4.1 Separated Steady Flow through the Gap

It is of great interest to investigate the solution to the Brown-Michael equation for a
steady flow between two plates so that we can compare the result with Cortelezzi’s
solution for a flow past a single plate.

4.1.1 Conformal Map and Symmetry

We will use the same conformal map as McDonald and Johnson (2004) to map the
physical z-plane with a gap in an infinite plate to the upper half of the mathematical
ζ-plane,

ζ = z +
(
z2 − 1

) 1

2 , z =
1

2

(

ζ +
1

ζ

)

. (4.1)

Introducing a flow through the gap, we acknowledge that by symmetry there will be
two vortices shed from the tips of the plates, continuously fed vorticity by vortex sheets
of negligible width which connect them to the tips. They have positions z1 (t) and z2 (t)
with circulations Γ1 (t) and Γ2 (t) respectively. We can exploit an important symmetry
property of this problem and reduce its complexity by observing that the two vortices
must be images in the line ℜz = 0. Therefore it is plain to see that z2 = −z̄1 and
Γ2 = −Γ1. It follows that in the ζ-plane,

1

2

(

ζ2 +
1

ζ2

)

= −1

2

(

ζ̄1 +
1

ζ̄1

)

, (4.2)
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Figure 4.1: z-plane with uniform flow through the
gap.
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Figure 4.2: Uniform flow through the gap in the ζ-
plane where the gap is represented by a dotted semi-
circle.

which can be seen as a quadratic equation in ζ2 with solutions,

ζ2 = −ζ̄1, − 1

ζ̄1
. (4.3)

However, if we let ζ1 = reiθ, θ ∈ [0, π], and we choose the second solution then
ζ2 = 1

re
i(θ+π), which is clearly no longer in the upper half of the ζ plane. Therefore

we discard this solution and find that ζ2 = −ζ̄1, indicating that in the mathematical
ζ-plane, so too are the vortices images in the imaginary axis.

4.1.2 Equations of Motion

In the ζ-plane, we have the complex velocity potential,

F (ζ, t) =
U

2π
log ζ +

iΓ1 (t)

2π

(

log

(
ζ − ζ1

ζ − ζ̄1

)

− log

(
ζ + ζ̄1

ζ + ζ1

))

, (4.4)

where the first term denotes a source of strength U located at the origin of the ζ-plane,
but since the gap in the wall maps to the unit upper semicircle in the ζ-plane, we see
in figures (2.1) and (2.2) that this source corresponds to uniform flow through the gap.
The second and third terms represent the two vortices at positions ζ1 and −ζ̄1 with
images at ζ̄1 and −ζ1 respectively.
Imposing the Kutta condition at the two tips,

dF

dz
=
dF

dζ

dζ

dz
= finite, ζ = z = ±1, (4.5)

we know that dζ
dz = 2

1− 1

ζ2

→ ∞, ζ → ±1, so we must have dF
dζ = 0, ζ = ±1. Differentiat-

ing (4.4) with respect to ζ at ζ = ±1, we get the same result, regardless of the choice
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of sign,
1

2π
+
iΓ1 (t)

2π

(
1

1− ζ1
− 1

1− ζ̄1
− 1

1 + ζ̄1
+

1

1 + ζ1

)

= 0, (4.6)

which yields a formula for the circulation,

Γ1 (t) =
U |1− ζ21 |2
8ℑζ1ℜζ1

. (4.7)

We use (1.29) to get our equations of motion and we set z10 = −1 as the initial position
of the vortex. In terms of ζ this becomes,

1

2

(

1− 1

ζ̄21

)
dζ̄1

dt
−
(
1

2

(

ζ̄1 +
1

ζ̄1

)

+ 1

) ℑ
(

ζ1
(
1− ζ̄21

)2 dζ1
dt

)

|1− ζ21 |2ℜζ1ℑζ1
=

2

1− 1
ζ2
1

(
U

2πζ1
+
iΓ1

2π

(

− 1

2iℑζ1
− 1

2ℜζ1
+

1

2ζ1
+

1

ζ1 − ζ31

))

.

(4.8)

We can split (4.8) into real and imaginary parts to get two coupled ordinary differential
equations for two unknowns, ξ1 and η1. Solving numerically, we convert the solutions
back to the z = x+ iy coordinates using the transform,

x =
ξ

2

(

1 +
1

ξ2 + η2

)

, (4.9)

y =
η

2

(

1− 1

ξ2 + η2

)

. (4.10)

The trajectories can be seen in figure (4.3), whereas the evolution of the circulation
is depicted in figure (4.4). It is noted that Γ1 and Γ2 are monotonically decreasing and
increasing functions of time respectively. Therefore, our model is valid for all times.
The two vortices have opposite signs and equal strengths and therefore pair up as a
dipole and propel each other onwards but must have circulation large enough to hold
the Kutta condition at the plate tips. That is why we see such a rapid increase in the
magnitude of the circulation. The increase is much greater than that in Cortelezzi’s
semi-infinite plate problem, where Γ1 ∝ t

1

3 . Similar to the semi-infinite plate problem,
the vortex trajectories are roughly perpendicular to the plate, though slightly perturbed
near the beginning. This suggests that it may be possible to find an analytical solution.

4.1.3 Stability

The equation of motion for the vortex (4.8) is singular at of the tip ζ = −1 and so we
must replace its initial positions with ζ1 (0) = −1+0.001i in the numerical calculation.
The stability of the solution can be determined by perturbing the initial position to
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Figure 4.3: Vortex trajectories for a uniform flow U = 1 through a gap in an infinitely long wall.
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ζ1 (0) = 0+0.0005i and ζ1 (0) = 0+0.002i. As we can see in figure (4.5), the convergence
of the three solutions to the same trajectory was rapid, therefore validating the stability
of our solution.

4.1.4 Analytical Solution

It was endeavoured to find an analytical solution to (4.8) by converting to polar coor-
dinates ζ1 = r1e

iθ1. If we let P = |1− ζ21 |2 = 1− 2r21 cos 2θ1+ r41, the resulting equation
becomes:

P 2 sin 2θ1

(

ṙ1 − ir1θ̇1

)

−
(
2r41 + 4ir21 sin 2θ1 − 2 + 4r31e

iθ1 − 4r1e
−iθ1
)

×
(

ṙ1 sin 2θ1
(
1− r41

)
+ r1θ̇1

(
cos 2θ1

(
1 + r41

)
− 2r21

))

= U
πP
(

2r31 sin 2θ1 +
ir1
2 − ir3

1

2 e
−2iθ1 + r1

4 P
(

i− eiθ1
(

i− eiθ1
(

1
sin θ1

+ i
cos θ1

))))

(4.11)

which can be split into real and imaginary parts,

ℜ : ṙ1 sin 2θ1
(
P 2 +

(
r41 − 1

) (
2
(
r41 − 1

)
+ 4r1 cos θ1

(
r21 − 1

)))

−r1θ̇1
(
cos 2θ1

(
1 + r41

)
− 2r21

) (
2
(
r41 − 1

)
+ 4r1 cos θ1

(
r21 − 1

))

= P
U

π

(
3

2
r31 sin 2θ1 − P

r1

2
cot 2θ1

)

,

(4.12)
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Figure 4.5: Here we witness the convergence of three solutions to the flow through a gap problem in the
physical plane. The solutions were calculated in the mathematical plane, each with slightly different
initial conditions, ζ1 (0) = −1 + 0.001i,−1 + 0.002i,−1 + 0.0005i. The y-axis has been rescaled by a
factor of 0.01 so as to observe the convergence.
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ℑ : 4ṙ1 sin 2θ1
(
r41 − 1

) (
r21 sin 2θ1 + r1 sin θ1

(
r21 + 1

))

−r1θ̇1
(
P 2 sin 2θ1 + 4

(
cos 2θ1

(
1 + r41

)
− 2r21

) (
r21 sin 2θ1 + r1 sin θ1

(
r21 + 1

)))

= P
U

π

(
r1

2
− r31

2
cos 2θ1 −

r1

4
P

)

.

(4.13)

After a great deal of painful rearranging, it is unfortunate to say that the attempt was
unsuccessful. However, that doesn’t go to say that it would be impossible. I encourage
anyone brave enough to give it a try.

4.2 Starting Vortex Near the Gap

The next logical step to take is to position a starting vortex with fixed circulation
fairly close to the gap and compare the results with figure (2.3). In this model there
will be two shed vortices initiating from the tips of the two plates at z = ±1. We
use the conformal map (4.1) and thus, if the starting vortex has position and cir-
culation ζ1 (t) , Γ1 and the Brown-Michael vortices have positions and circulations
ζ2 (t) , Γ2 (t) and ζ3 (t) , Γ3 (t) where ζ2 (0) = −1 ζ3 (0) = 1 then the complex
velocity potential is

F (ζ, t) = F (ζ, t) =
iΓ1

2π
log

(
ζ − ζ1

ζ − ζ̄1

)

+
iΓ2

2π
log

(
ζ − ζ2

ζ − ζ̄2

)

+
iΓ3

2π
log

(
ζ − ζ3

ζ − ζ̄3

)

. (4.14)

We are interested in a starting vortex which begins away from the middle of the gap
and therefore we lose all symmetry properties. As a Consequence the system becomes
extremely complicated and so we solve the entire problem numerically. We use (1.29)
for the vortices at positions ζ1 and ζ2, and (1.30) for the vortex with constant circulation
at ζ1. To ascertain the functions Γ2 (t) and Γ3 (t) we solve the pair of simultaneous
equations that result from the Kutta condition at dF

dζ = 0, ζ = ±1. To add to the
complexity, after a certain amount of time the circulation of the vortex at position ζ3
reaches a stationary point thereby imposing its then constant value for all future times
and initiating a fourth vortex from the tip at ζ = z = −1. In figure (2.3) we saw that a
vortex beginning near the gap would slip through if its original vertical distance from
the boundary was less than half the width of the gap, and it would otherwise skip over
the gap.

However, in figures (4.6) and (4.7), we see that the vortex will skip over if we take
its vertical distance as 1

20 of the width of the gap, which here is 0.1, let alone half.
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Figure 4.6: Trajectory of a vortex which begins at z = −4 + i, along with the trajectories of subsequent
Brown-Michael vortices.

Figure 4.7: Trajectory of a vortex which begins at z = −4+0.1i, along with the trajectories of subsequent
Brown-Michael vortices.
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Chapter 5

Wedge Dynamics

We will now direct our attention to finding an analytical solution to the problem of
steady flow past a wedge of arbitrary angle.

5.1 Conformal Map and Equations of Motion

The conformal map from the mathematical ζ-plane to the physical z-plane consisting
of a wedge with exterior angle α is

ζ = z
π
α , (5.1)

where we choose α ∈ (π, 2π) since we are not interested in the case of flow on the
interior of a wedge where there is no sharp corner. When α ≤ π, the Kutta condition
for a flow past the plate with complex velocity potential,

F (ζ) = Uζ, (5.2)

can be satisfied since,

u− iv =
dF

dz
=
π

α
Uz

π−α
α , (5.3)

which is finite at z = 0 since π − α ≥ 0, and therefore there is no singularity in the
velocity field at the tip. If, however, α > π then the velocity does becomes singular
at the tip of the wedge and therefore we require the Brown-Michael model to simulate
the vortex shedding and we impose the Kutta condition.
It should be noted that in the limit α → 2π, we get the Cortelezzi problem (1995)
reflected about the imaginary axis. In the limit α → π we effectively have the identity
map with no vortex shedding.
The complex velocity potential for the flow in the mathematical plane is no different
from that in the Cortelezzi problem (3.1) since it is only the conformal map we have
changed. Since z

π−α
α becomes singular as z → 0, the Kutta condition transforms to,

dF

dζ
= 0, ζ = 0, (5.4)
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ΑU

Figure 5.1: Steady flow U past a wedge of exterior angle α.

and therefore we derive an equation for the circulation Γ1 (t) of the point vortex at
position ζ1 (t) identical to (3.4). Thus, in the mathematical plane, the Brown-Michael
equation (1.29) with initial position z10 = 0 becomes,

dζ̄1

dt
− π

α
ζ̄1
|ζ1|2
ℑζ1

ℑ
[
1

ζ21

dζ1

dt

]

= U
π2

α2
|ζ1−

α
π

1 |2
(

1 +
|ζ1|2
4ℑζ1

(

i
1− α

π

ζ1
− 1

ℑζ1

))

. (5.5)

If we change to polar coordinates ζ = r1e
iθ1 then (5.5) becomes,

ṙ1 − ir1θ̇1 −
π

α sin θ1

(

r1θ̇1 cos θ1 − ṙ1 sin θ1

)

=
Uπ2

α2
r
2(1−α

π)
1

(

eiθ1 +
1

4 sin θ1

(

i
(

1− α

π

)

− eiθ1

sin θ1

))

.

(5.6)

We then find the real and imaginary parts to be

ℜ : ṙ1

(

1 +
π

α

)

− r1θ̇1
π

α
cot θ1 = U

π2

α2
r
2(1−α

π)
1 cos θ1

(

1− 1

4 sin2 θ1

)

, (5.7)

ℑ : −r1θ̇1 = U
π2

α2
r
2(1−α

π)
1 sin θ1

(

1− α

4π sin2 θ1

)

, (5.8)
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which yield two coupled ordinary differential equations for r1 and θ1:

ṙ1 =
Uπ2 (α− π)

α2 (α + π)
r
2(1−α

π)
1 cos θ1, (5.9)

θ̇1 =
Uπ2

α2 sin θ1
r
(1− 2α

π )
1

(

cos2 θ1 +
α

4π
− 1
)

, (5.10)

with initial conditions,

r1 (0) = 0, θ1 (0) = θ0 ∈ (0, π) . (5.11)

It should be noted that when α = 2π, (5.9− 5.10) become (3.8) with constant U . The
equations (5.9 − 5.10) are singular at the initial position but we can use the dynamic
rescaling suggested by McLaughlin et al (1986) to remove the singularity. We therefore
make the following change of variables,

ξ = Ur
2α
π
−1

1 , ω = cos θ1. (5.12)

It follows from (5.9− 5.11) that,

dξ

dt
=

(
2α

π
− 1

)(
π2 (α− π)

α2 (α + π)

)

U 2ω, (5.13)

dω

dt
=
U 2π2

α2ξ

(

1− ω2 − α

4π

)

, (5.14)

ξ (0) = 0, ω (0) = ω0 ∈ (−1, 1) . (5.15)

These combine to give,
ξ

B

d2ξ

dt2
+

(
dξ

dt

)2

=
C

B
, (5.16)

where we define the constants

B =
π (α + π)

(α− π) (2α− π)
, C =

(

1− α

4π

) U 4π3 (α− π) (2α− π)

α4 (α + π)
. (5.17)

If we let φ = ξ
B then (5.16) becomes,

B2

(

φ
d2φ

dt2
+

(
dφ

dt

)2
)

=
C

B
, (5.18)

or,
d2

dt2

(
φ2
)
=

C

B3
, (5.19)

which we solve with the initial conditions to get,

φ = ±
√

C

B3
t, ω = ± α2

U 2π2

√
CB (const), (5.20)
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or,

ξ = ±
√

C

B
t, ω = ± α2

U 2π2

√
CB, (5.21)

where the sign of ξ = Ur
2α
π
−1

1 is determined by the sign of U and the sign of ω corre-
sponds to the sign of ξ. Converting back to our coordinates (r1, θ1), we find,

r1 =

( |U |π (2α− π) (α− π)

α2 (α + π)

√

1− α

4π
t

) π
2α−π

, (5.22)

θ1 = cos−1±
√

1− α

4π
∈ (0, π) . (5.23)

Since α ∈ (π, 2π), we get,

θ1 ∈
{

∈
(
π
6 ,

π
4

)
: U > 0

∈
(
3π
4 ,

5π
6

)
: U < 0

(5.24)

Finally, we use the transformation z1 =
(
r1e

iθ1
)α

π to find the position of the vortex in
the physical plane,

z1 =

( |U |π (2α− π) (α− π)

α2 (α + π)

√

1− α

4π
t

) α
2α−π

ei
α
π
cos−1 ±

√
1− α

4π . (5.25)

Therefore, the vortex will move on a trajectory with a fixed angle λ = α
π cos

−1±
√
1− α

4π ,
where,

λ ∈
{

∈
(
π
6 ,

π
2

)
: U > 0

∈
(
3π
2 ,

5π
6

)
: U < 0

(5.26)

It is noted that Γ1 ∝ t
π

2α−π and therefore the circulation never reaches a stationary
point. As long as the uniform stream is steady, there will only ever be one shed vortex.
Vener (2004) investigated the same problem with a slightly different conformal map
and an unsteady flow U(t), though we both reached the same result in different ways.
He derived the conditions by which there would be a circulation event for the first shed
vortex forcing a second vortex to deploy from the tip.

5.2 Stability

If we let θ = θ0 + ξ(t), then (5.10) becomes

ξ̇ ≈ −ξ2|U |π
2

α2

√

1− α

4π
r1−

2α
π . (5.27)

We get an exponentially decaying perturbation and therefore the trajectory is stable.
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Figure 5.2: Relationship between the wedge angle, α, and the trajectory angle, θ, of the shed vortex.

5.3 Wedge Angle-Trajectory Relationship

Having found an expression for λ, the angle of the trajectory of the shed vortex, it
is of interest to investigate how this angle varies with respect to the wedge angle α.
Without loss of generality, let’s assume that U > 0, then the relation can be observed
in figure (5.2).

5.4 Right Angle

In the case of α = 3π
2 the wedge becomes a right angle corner. In this scenario the

position and circulation of the shed vortex are found to be,

z1 =
2 · 2 1

8e
i 3
2
sec−1

(

2
√

2

5

)

(tU)
3

4

3
√
35

3

8

, (5.28)

Γ1 =
4
(
2
5

) 1

4 Uπ
√
tU

3
√
3

. (5.29)

The trajectory is plotted in (5.3). The vortex will move further and further away from

the tip of the wedge at a fixed angle of 3
2 sec

−1
(

2
√

2
5

)

with increasing circulation since

Γ1 ∝ t
1

2 .
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Figure 5.3: Vortex trajectory for the Brown-Michael model (1954) of flow past a right angled wedge,
where U = 1. If we were to choose U = −1 then the trajectory would be in the opposite direction, i.e.
reflected about the diagonal of the wedge.
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Chapter 6

Conclusion

A variety of methods have been used to explore vortex dynamics in sharp edged do-
mains. A vortex Hamiltonian approach was used to observe the path of a vortex near
a gap in an infinitely long wall and near a semi-infinite plate. We found that a vortex
which begins less than half the gap distance above the wall will slip through the gap
and continue its path in reverse direction on the opposite side of the barrier. Otherwise
it will jump across the gap and continue in the same direction. The superimposition
of a background uniform stream was investigated and specific analysis was taken to
observe the vortex dynamics very close to the sharp edge.

We then adopted the Brown-Michael model (1954) to simulate vortex shedding in
several domains of interest. The first domain was a semi-infinite plate along the neg-
ative real axis. We followed Cortelezzi’s method (1995) to find an exact solution for
the position and circulation of a point vortex resulting from an unsteady flow past
the plate. We found that the vortex will always move perpendicular to the plate on a
stable trajectory either upwards or downwards depending on the sign of the uniform
flow.

We then investigated the case of an oscillating flow past the plate, where the circu-
lation of the shed vortex reached a critical maximum value after which it was forced
to remain constant. A new vortex was then shed from the tip and the cycle repeated
itself. Vortex after vortex was generated from the tip and many of them paired up as
dipoles momentarily or permanently.

We then replaced the uniform flow with a flow driven by a vortex which initiates
far down the length of the plate. We found that without the Brown-Michael model,
the vortex would be driven along the wall by its image and then pass around the plate
and continue on the opposite side in the reverse direction. However, when we acknowl-
edge a second vortex shed from the tip of the plate, the path is completely different.
The former vortex coming in from approximated −∞ pairs up with the shed vortex of
opposite sign and similar strength and together they form a dipole propagating away
from the plate to infinity.
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Reverting back to the original domain consisting of a gap in an infinitely long wall,
we then adopted the Brown-Michael model to simulate vorticity shedding from the tips
of the barriers. We investigated the case of a uniform stream through the gap and the
consequent vortex shedding. We calculated the trajectories of the two vortices and
found that they move almost perfectly perpendicular to the plate. By symmetry the
two vortices have opposite sign and equal strength explaining why they propagate to
infinity as a dipole.

We then replaced the uniform flow through the gap with a flow driven by a vortex
initiating far down one side of the gap above the barrier. The flow generates a further
vortex at each tip of the gap barriers. The result was that when the vortex coming
in from approximated −∞ approached the tip of the left hand wall it was repelled
by the shed vortices such that it jumped across the gap. We attempted placing the
starting vortex 1

20 of the gap distance above the wall and it still persisted in jumping
over. Contrasting the results from the Hamiltonian methods, it would appear that the
vortex jumps across no matter how close we might initiate it above the wall.

We finally applied the Brown-Michael model to the steady flow past a wedge of ar-
bitrary angle, where a point vortex is shed from the tip of the wedge. We derived an
exact solution for the position of the vortex in terms of the wedge angle. It was found
that the vortex will always move on a trajectory with fixed angle θ and we were able
to plot a relationship between the wedge angle and the trajectory angle. In the specific
case of a right angle wedge we derived the vortex position and circulation.

The Brown-Michael model could be considered idealised and unrealistic, yet Brown
and Michael (1954) compared their simulated results for the velocity and pressure of
the fluid near a delta wing to experimental results and found a strong correlation.

There are numerous further domains and fluid flow examples which could be ex-
plored. Llewellyn-Smith (Llewellyn-Smith, 2009) has used this model to simulate the
effect of vortex shedding on a falling card. In that problem the location of the bound-
ary, as well as the shed vortices, must be found. Vener (2004) derived the vortex
dynamics for an unsteady flow past a corner of arbitrary angle, and considering that
any polygon is made up of sharp corners, one could potentially approximate the effect
of vortex shedding on a falling 2-dimensional shape. As the object fell, unsteady flow
past the shape corners would generate a series of vortices which in turn would alter
the position and rotation of the object.
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