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We have developed mathematical models in both one and two spatial dimensions for the solidification of
silicon. The one-dimensional model describes slab casting related to a set of thin-casting experiments.
The model is fitted to thermocouple data and accounts for various heat transfer mechanisms as well
as the latent heat. The model can be used to predict the time taken for the material to completely solidify
and the solidification distance (the point where solidification fronts meet which can be observed as a dis-
continuity in the grain microstructure). Simple approximate analytical results, which agree very well
with the full-scale numerical solutions on Matlab and COMSOL, are provided. The two-dimensional
model relates to a wedge casting experiment where, again, various heat transfer mechanisms and latent
heat need to be accounted for. Experimental data from thermocouples is used to quantify the heat trans-
fer coefficients by fitting to two-dimensional COMSOL simulations. A very simple analytical ‘‘Triangle
model” is derived by assuming that the solidification fronts move as flat surfaces from each of the two
wedge walls and the air surface, independently of each other, as three separate one-dimensional
quasi-steady approximations. This model predicts that the area of liquid silicon will diminish as shrinking
self-similar triangles. This simplified model provides analytical results for the solidification time and dis-
tances which agree very well with the COMSOL simulations.
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Nomenclature

cpi i ¼ l; s. The specific heat capacity of liquid (l) and solid
(s) silicon

d the depth of the silicon melt
D the solidification distance
hc the conductive heat transfer coefficient
ha the convective heat transfer coefficient
ki i ¼ l; s. The thermal diffusivity of liquid (l) and solid (s)

silicon
K the ratio of solid to liquid thermal diffusivities
j K multiplied by the ratio of solid to liquid specific heat

capacities
L the latent heat of silicon
n the outward facing unit normal to an interface
Nc the Nusselt number for conductive heat transfer to the

mould
Na the Nusselt number for convective heat transfer to the

air
Nr the Nusselt number for radiative heat transfer to the air
qi i ¼ l; s. The heat flux in the liquid (l) and solid (s) silicon
q the density of silicon

si i ¼ 1; 2. The positions of the solidification fronts
r the Stefan–Boltzmann constant
St the Stefan number
t� the solidification time
Tm the melting temperature of pure silicon
T0 the initial temperature of the liquid silicon before

cooling
T1 room temperature
Tinit the non-dimensional initial temperature of the silicon

melt
TA the non-dimensional room temperature
h the enthalpy
H the non-dimensional enthalpy
Vn the speed of the solidification front in the normal direc-

tion
x the position of the solidification front in two dimensions
/ the wedge angle coordinate
a the wedge angle
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1. Introduction

Newmarkets demand high yield silicon of a more homogeneous
consistency. It is well known that the cooling rates and mould size
affect the microstructure and homogeneity of silicon during cast-
ing. The aim of this paper is to gain insight into the cooling rates
that occur in two casting geometries. Typically, when cooling rates
are too fast the silicon grains are very small (see Fig. 1), causing
dust, or ‘fines’, losses in the post-casting stage when the silicon is
re-crushed. Although the yield is reduced, the small grains allow
for a homogeneous distribution of impurities, which is an advan-
tage in the silicon alloy industry. In contrast, when the silicon is
cooled too slowly, the grains which form are much longer and hold
impurities in the grain boundaries. These impurities are therefore
distributed in a less homogeneous manner and, in fact, when the
silicon is re-crushed, a large portion of them drop out from the long
grain boundaries and are lost. For more specific details on the
microstructure of silicon, see [1,2].
Fig. 1. Fast solidification leads to small grains and a homogeneous distribution of
impurities but large loss of yield due to wasted dust (fines) when material is re-
crushed. Slow solidification leads to large grains and an inhomogeneous distribu-
tion of impurities, large-scale segregation in grain boundaries but high yield. We
can see here that solidification occurred more quickly at the bottom edge of this
sample due to the smaller grains. (Taken from experiment at Elkem on 04/06/15.)
Recent experiments have shown that the casting of silicon in
small, thin containers shows promise for creating materials with
good homogeneity. Hence the emerging interest in the silicon
industry of the so-called ‘thin-casting’ technique. One dimensional
solidification models are appropriate in thin casts where the aspect
ratio is small. There has been extensive work on the mathematical
modelling of these types of ‘Stefan problems’ where there is a solid-
ification front which moves like the square root of time [3–9]. In
these examples, similarity solutions only exist in the case of Dirich-
let (constant temperature) or Neumann (no heat flux) boundary
conditions and are therefore limited. In the case of small Stefan
number, quasi-steady approximations can be made, rendering the
problem considerably easier to solve [10,11]. The existence of mov-
ing boundaries tend to make these problems difficult for numerical
simulation yet many approaches have been examined [12–16]. This
paper provides an analysis of the advantages and disadvantages of
some of these analytical solutions for the purpose of direct compar-
ison with silicon solidification experiments at Elkem and numerical
simulations generated using COMSOL [17] and Matlab [18]. In par-
ticular, we find that the quasi-steady solution with linearised
boundary conditions performs very well whilst providing simple
analytical expressions for the temperature profile and position of
the moving boundary. The application of the quasi-steady approx-
imation to the domains and boundary conditions in this paper
has not been explored in the literature. Furthermore, they are novel
applications of mathematical modelling within the silicon manu-
facturing industry. The quasi steady solution, together with the
parameter estimations given by the numerical simulations, will
be useful for silicon manufacturers to predict the thermal history
of the silicon and give approximate results for the solidification
time and distance. The results will also apply to other solidification
industries where the Stefan number is relatively small.

We will consider the case where the solidification of 100% pure
silicon takes place due to cooling from both the metal mould and
the surrounding air. The importance of different cooling mecha-
nisms and cast depths will be investigated. We will use thermal
data taken from these experiments to estimate the parameter val-
ues. The pure silicon case will give insight into the expected cool-
ing rates that will be encountered even when impurities are
present and is much simpler to analyse.
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There has also been recent interest in casting in a wedge shaped
mould to allow investigation of a range of cooling rates simultane-
ously. Perepezko and Hildal provide a comprehensive summary of
the experimental work in this regard [19]. The problem of solidifi-
cation in a wedge has been analysed mathematically and analytical
solutions have been found in specific cases [20–25]. But, as with
the one dimensional problem, these analytical solutions are con-
strained to a limited selection of boundary conditions. We derive
a simple ‘Triangle model’ using the 1D quasi-steady approximation
from each edge of the wedge and from the air surface so that the
solidification fronts emerge creating an region of liquid silicon
which decreases in the shape of a self-similar triangle. This approx-
imation, though crude, compares remarkably well with the full
scale COMSOL simulation, whilst yielding simple analytical results.
We use the COMSOL model to estimate the parameter values of the
problem based on thermal data taken from Elkem experiments.

The paper is outlined as follows. In Section 2, we present the
one dimensional model for the solidification of a silicon slab. We
study the model through numerical simulations, while also obtain-
ing analytical approximations to the solutions under relevant
assumptions and reductions. We find that the aforementioned
quasi-steady solution nicely captures the qualitative features of
the numerical simulations. This permits us to better understand
the solidification time for this silicon configuration. In Section 3,
we consider the two-dimensional model of a silicon wedge. We
run numerical simulations and obtain analytical approximations
through a quasi-one-dimensional approach. The approximations
agree quite well with the numerical simulations in the case where
the wedge angle is small. Summarising comments and suggestions
for future work are given in Section 4.
2. One dimensional model: Thin casting

Heat flow in molten silicon above the melting temperature and
in solid silicon below the melting temperature can be described by
the heat diffusion equation with different coefficients in each
region (see [26] for details). The phase transition for pure silicon
is a sharp interface where the temperature is at the melting point
Fig. 2. Diagram of the non-dimensionalised 1D model of the evolu
and heat is released due to latent heat. We will assume pure silicon
to allow us to use a sharp interface model but note that with impu-
rities this interface would be diffuse which we shall not consider
here.

Since the slab cast is wide, long and shallow the heat flow is
dominated by flow through the depth and hence a one-
dimensional model can be considered. The governing equation
for the temperature T is:

qicpi
@T
@t

¼ ki
@2T
@x2

; ð1Þ

where qi; cpi , and ki are the density, specific heat capacity and ther-
mal conductivity of the liquid (i ¼ l) and solid (i ¼ s) respectively,
which are all taken to be constant. Note that flow of the liquid
has been neglected and the density change at the phase-boundary
is quite small (about 2%) so the density will be taken constant
(ql ¼ qs ¼ q).

The cast silicon is in the region 0 6 x 6 d where x ¼ 0 is the
mould (made of copper) and x ¼ d is the surface interface with
the air. Modelling including effects in the copper mould have been
done but the results are similar to those found by assuming the
copper is at constant temperature so we use this simplification
from hereon. Contact between the silicon and copper results in
conductive heat transfer while the air creates transfer by both radi-
ation and convection. Boundary conditions for each of these sur-
faces can be modelled as follows:

at the copper/silicon boundary, x ¼ 0,

ks
@T
@x

¼ hc T � T1ð Þ; ð2Þ

at the silicon/air boundary, x ¼ d,

�ks
@T
@x

¼ ha T � T1ð Þ þ r� T4 � T4
1

� �
; ð3Þ

where T1 is the temperature (K) of the mould and the air, hc is the
conduction heat transfer coefficient (W K�1 m�2), ha is the
convective heat transfer coefficient (W K�1 m�2), r is the
tion of solid and liquid phases in the solidification of silicon.



Table 1
List of dimensional parameter values. All values were supplied by Elkem.

Constant Typical value Units

Tm 1683 K
T0 1700 K
T1 293 K
d 0.03–0.1 m
q 2533 kg m�3

L 1798060 J kg�1

kl 43 Wm�1 K�1

ks 23.5 Wm�1 K�1

cps 970 J kg�1 K�1

cpl 970 J kg�1 K�1

r 5:67� 10�8 Wm�2 K�4
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Stefan–Boltzmann constant (W K�4 m�2) and � is the emissivity of

silicon. Note that the radiative heat transfer is nonlinear and a com-
mon approximation, that allows simple analytical expression to be
derived, is to linearise around the melting temperature Tm and to
take

�ks
@T
@x

� ha T � T1ð Þ þ r� T4
m � T4

1
� �

þ 4T3
m T � Tmð Þ

� �
: ð4Þ

There are two phase-boundaries and they emerge from each
end of the liquid as it cools down to the melting temperature
and overcomes the latent heat. Let the position of the phase-
boundary near the mould be denoted x ¼ s1ðtÞ and that near the
air by, x ¼ s2ðtÞ (see Fig. 2). The temperature at these phase-
boundaries is equal the melting temperature,

Tðs1ðtÞ; tÞ ¼ Tðs2ðtÞ; tÞ ¼ Tm; ð5Þ
and to change phase the latent heat, L (J kg�1), of the silicon must be
removed. Using conservation of heat gives the ‘Stefan condition’ at
the phase-boundary that allows the heat flux to jump such that,

qL
dsi
dt

¼ ql � qs; i ¼ 1; 2; ð6Þ

where q ¼ �k @T
@x is the heat flux in the x direction. We also impose

the initial condition

T ¼ T0 when t ¼ 0: ð7Þ
A list of the well known values of the parameters can be found

in Table 1. There are however three parameters that are not easily
available and these are ha; hc and � all related to the surface heat
transfer rates. Although these can be estimated using empirical
laws the approach taken here was to use these parameters to fit
the observed experimental data.

2.1. Non-dimensionalisation

Let us use the following scalings for each variable,

t ¼ qLd2

kl Tm � T1ð Þ t̂; x ¼ dx̂; T ¼ Tm þ Tm � T1ð ÞT̂: ð8Þ
Table 2
List of non-dimensional parameter values.

Constant Typical value

St 0.75
K 0.55
j 0.55
Tinit 0.01
TA 0.21
Nc 1.02
Na 0.03
Nr 0.26
Then, our model becomes (dropping the hat notation from hereon),

St
j

@T
@t

¼ @2T
@x2

on 0 < x < s1ðtÞ; ð9Þ

St
@T
@t

¼ @2T
@x2

on s1ðtÞ < x < s2ðtÞ; ð10Þ
St
j

@T
@t

¼ @2T
@x2

on s2ðtÞ < x < 1; ð11Þ

while the boundary and initial conditions become

@T
@x

¼ �Na 1þ Tð Þ

�Nr 1þ TA þ Tð Þ4 � T4
A

� � at x ¼ 1; ð12Þ

@T
@x

¼ Nc 1þ Tð Þ at x ¼ 0; ð13Þ
T ¼ Tinit when t ¼ 0; ð14Þ
and the Stefan condition at the phase-boundaries becomes

ds1
dt

¼ K
@T
@x

����
s�1

� @T
@x

����
sþ1

; T ¼ 0 at x ¼ s1ðtÞ; ð15Þ

ds2
dt

¼ K
@T
@x

����
sþ2

� @T
@x

����
s�2

; T ¼ 0 at x ¼ s2ðtÞ: ð16Þ

Here we have defined the non-dimensional constants

St ¼ cpl Tm � T1ð Þ
L

; j ¼ cplks
cps kl

; K ¼ ks
kl
;

Nc ¼ hcd
ks

; Na ¼ had
ks

; Nr ¼ r�d
ks

Tm � T1ð Þ3;

Tinit ¼ T0 � Tm

Tm � T1
; TA ¼ T1

Tm � T1ð Þ ;

ð17Þ

and all of the approximate parameter values are given in Table 2.
Note that Nc; Nr and Na are the Nusselt numbers for each specific
heat transfer mechanism and here we choose their value to fit the
model to the experimental data. For a visual representation of this
1D model, see Fig. 2. The Stefan number, which for typical silicon
casting conditions has a value St � 0:75, represents the ratio of
the sensible heat to the latent heat. It should be noted that all
Fig. 3. Numerical simulation of the two-phase Stefan problem (9)–(16) with
conduction boundary conditions at x ¼ 0 and radiation/convection boundary
conditions at x ¼ d. Here the depth of the cast is d ¼ 0:08 m. We can see the two
solidification fronts emerging.



Fig. 4. Comparison of dimensional solidification times, t� , and nondimensional fractional solidification distance, D=d, predicted from numerical and analytical solutions for
varying cast depth d. Each column contains different physics and therefore should not be compared directly. Only the solutions in each graph should be compared. The heat
transfer coefficients used were hc ¼ 180 W K�1 m�2; ha ¼ 120 W K�1 m�2 (for the case without radiation), ha ¼ 10 W K�1 m�2, (with radiation) and � ¼ 0:5. Numerical
solutions were made on Matlab and COMSOL and the quasi-steady solution is described in Eqs. (20)–(23) with the linearised boundary condition for the radiation.

534 G.P. Benham et al. / International Journal of Heat and Mass Transfer 98 (2016) 530–540
non-dimensional constants are Oð1Þ, except for the Nusselt num-
bers, Na � 0:01 and Tinit � 0:01 which are relatively small.

2.2. Numerical solution

The problem stated in Eqs. (9)–(16) was solved using simple
finite differences with the problem formulated to use the enthalpy
method in Matlab [18]. For any material, the temperature and the
enthalpy, or heat content h, are related in a unique continuous way,
and for a pure material, such as silicon, this can take the non-
dimensional form

T ¼
j
StH for H < 0;
0 for 0 < H < 1

K ;
K
St H� 1

K

� �
for 1

K < H;

8><
>: ð18Þ

where H ¼ kl
qLks

h� Tmcskl
Lks

. Now we can rewrite (11) in the much sim-

pler form

@H
@t

¼ @2T
@x2

; ð19Þ

where H and T are related by (18). This relation accounts for the
necessary jump in enthalpy as we cross from liquid to solid phase.
An explicit timestepping method was used, although implicit meth-
ods are possible (see Voller et al. [14]). An example of the resulting
temperature distribution is shown in Fig. 3 and the time dependant
behaviour has been fit to thermal data and shows suitable
values for the heat transfer coefficients are hc ¼ 300 W K�1 m�2;

ha ¼ 10 W K�1 m�2, and � ¼ 0:5. This shows that the dominant heat
transfer is to the mould, as indicated by the rapid motion of this
phase-boundary, and the emissivity is reduced from the expected
value due to surface effects. The same problem was also solved
using the commercial package COMSOL [17] and these agreed clo-
sely with the Matlab calculations (see Figs. 4 and 5).

2.3. Analytical solutions

Some progress can be made in developing analytical solutions
to the problem stated in Eqs. (9)–(16) by considering special cases.
One particularly helpful simplification, which is very realistic, is to
consider the case where the molten silicon is just at the melting
temperature, ðTinit ¼ 0Þ so that the temperature in the molten
region is constant ðT ¼ 0Þ and the problem is then a one-phase Ste-
fan problem. The movement of the two interfaces is then decou-
pled until they collide.

Much work has been done on finding similarity solutions to
these types of problems where the solidification front moves like
t1=2 (see [27] for examples). The special form of the similarity solu-
tions requires that the boundary conditions are either fixed tem-
perature or zero flux boundary conditions (see [6]). We have
explored such solutions but these restrictions make these solutions
not particularly useful in explaining the behaviour.

A second approach that is commonly taken is to consider small
values of the Stefan number resulting in the quasi-steady approx-



Fig. 5. COMSOL and Matlab simulations of the thermal history of a point in the domain corresponding to thermocouple data from a casting experiment with d ¼ 0:08 m. Here
we used all available parameters to fit (by eye) the predicitions to the data. The parameters used were the heat transfer coefficients hc ¼ 300 W K�1 m�2; ha ¼ 10 W K�1 m�2,
and the emissivity of silicon � ¼ 0:5.
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imation. Fig. 3 indicates that the gradient of the heat in the solid

region is approximately constant. This suggests that @2T
@x2 � 0, and

therefore that we can ignore the time derivative in the heat equa-
tion. In fact St � 0:75 suggesting that this might not a particularly
valid assumption, however it compares well with numerical
simulations.

If we assume conduction/convection boundary conditions, the
full problem near the bottom of the mould can be written as

@2T
@x2

¼ 0 on 0 < x < s1 tð Þ; ð20Þ
@T
@x

¼ Nc 1þ Tð Þ at x ¼ 0; ð21Þ
T ¼ 0 at x ¼ s1 tð Þ; ð22Þ
s1 ¼ 0 when t ¼ 0: ð23Þ

The problem near the top surface can be posed in the same
manner and the solution in the entire domain becomes

Tðx; tÞ ¼

1þNcxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2KN2

c t
p � 1 on 0 < x < s1 tð Þ;

0 on s1 tð Þ < x < s2 tð Þ;
1þNa�Naxð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2KN2
a t

p � 1 on s2 tð Þ < x < 1;

8>>>><
>>>>:

ð24Þ

where the two moving boundaries are given by

s1 tð Þ ¼ 1
Nc

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2KN2

c t
q� 	

;

s2 tð Þ ¼ 1
Na

1þ Na �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2KN2

at
q� 	

:

ð25Þ
Now we can find a closed form expression for the solidification
time, t�, at which the two boundaries collide s1 t�ð Þ ¼ s2ðt�Þ. This
closed form expression is quite complicated and long but we can
simplify it in the specific case where Na ¼ Nc ¼ N (when the prob-
lem is symmetric). Then we find that

t� ¼ 1
8KN

4þ Nð Þ; ð26Þ

and, of course, the boundaries meet at x ¼ 1
2.

One important observation is that the solidification time for the
quasi-steady solution varies with the cast depth d almost linearly
(see Fig. 4).

It should be noted that if we include any radiative terms in the
boundary conditions, this prevents us from obtaining the analytical
solution to the quasi-steady problem. However, we find that a
decent approximation occurs if we use the linearised version in
Eq. (4).

Changes in cast depth are not expected to affect the heat trans-
fer coefficients significantly so, once we have fitted the coefficients
for one depth, we will know their values in general. It is of great
interest in industry to be able to predict the ‘‘solidification time”
t ¼ t� when the material becomes entirely solidified. Another
important feature is the ‘solidification distance’, which is the point,
x ¼ D where the two phase-boundaries met. This point can be
observed under a microscope as a clear discontinuity in crystal
size. One of the easiest things that operators can control is the cast
depth d. Thus, having derived solutions using various different
approximations, Fig. 4 compares the predicted t� (in dimensional
units) and D=d (the fraction of the cast depth) for various d using
different approximations.



Fig. 6. A cut section from a 3 cm cast (with a 2 cm layer of pre-laid fines) where we can see a discontinuity in the microstructure at approximately 50–60% depth. A yellow
line has been drawn to indicate roughly where the two solidification fronts may have met. Solidification was slow enough at either side of the interface meeting point
allowing larger grains to form. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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It seems that in all cases, the quasi-steady solution performs
very well as a predicative tool. One interesting observation is that
it appears that the solidification distance as a fraction of the total
depth does not seem to depend on the total depth. Furthermore,
the solidification time appears to vary almost linearly with cast
depth.

2.4. Thermal data

Elkem has provided thermal measurement data from several
experiments that has been used to validate and calibrate the vari-
ous mathematical models.

Attempts were made to fit the model to the data using various
parameters. In Fig. 5 we see how by fitting the numerical solution
to the data by eye, over a set of 3 parameters, we can match the
curves up to an error of around 15%. We also attempted to fit the
curves using numerical optimisation software but found that it
was unwieldy.

Note the two discontinuities in the time derivative of T in Fig. 5.
The observed discontinuities in the simulation data are probably
due to the discontinuous enthalpy function and the discontinuity
in thermal conductivity from solid to liquid. Furthermore, even if
there were some sharper changes in the temperature, the thermo-
couple would smooth them out a little due to its own internal heat
diffusion. Since the aim of this paper is to provide simple insight in
the general behaviour this discontinuities are not a major concern.

2.5. Grain boundary data

After the experiments the solidified casts were cut into sections
to observe the internal grain microstructure. Fig. 6 shows a clear
discontinuity in the microstructure at the position highlighted by
the yellow line which corresponds to the place where the two
solidification fronts met.

Using the quasi-steady model given in Eqs. (20)–(23), we can
derive an exact expression for the solidification distance, given
the parameters of the problem. We can now formulate an inverse
problem, where we know the solidification distance and want to
derive the parameters. The solidification distance D, is found to be

D
d
¼ Ncð2þ NaÞ

2ðNa þ NaNc þ NcÞ : ð27Þ

Therefore, given a solidification distance, D, and one of the Nusselt
numbers, we can find the other Nusselt number explicitly, and
therefore the corresponding heat transfer coefficient. We have not
done any further grain boundary analysis, but it would be of inter-
est to investigate how the predicted grain boundaries match up
with those in reality.

3. Two dimensional model: Wedge casting

The ideas outlined for analysing the one-dimensional slab prob-
lem can now be applied to consider heat flow in a wedge caster.
The two dimensional Stefan problem is a simple extension of
Eqs. (9)–(16). We can use the same dimensional scalings and
non-dimensional constants, the only difference is the second order
x derivative in Eqs. (9)–(11) is replaced by the Laplacian operator.
For solid silicon, we have

St
j

@T
@t

¼ r2T; ð28Þ

while for liquid silicon, we have

St
@T
@t

¼ r2T: ð29Þ

The Stefan condition (15) and (16) is altered to

Vn ¼ Kn � rTjsolid � n � rTjliquid; t ¼ xðx; yÞ; ð30Þ
where the phase-boundary is given byxðx; yÞ ¼ t and Vn is its speed
in the normal direction n (see [3] for more details).

Elkem performed experiments to investigate casting silicon in a
wedge-shaped mould. The company are interested in wedge cast-
ing because it allows for solidification over a large range of cooling
rates in one run. Upon cutting the solidified cast, it is possible to
pinpoint areas of desired microstructure, and when compared with
a suitable model, we can extract the corresponding heat transfer
coefficients. The wedge used in the experiment is of angle p

4, but
wedge casters with larger or smaller wedge angles are of interest
so we let the angle coordinate / be such that 0 < / < a, where a
is the wedge angle.

3.1. Numerical and analytical solutions

The two dimensional problem given in Eqs. (28)–(30) with con-
duction to the graphite, and convection and radiation to the air was
solved using COMSOL in a wedge geometry relevant to the exper-
iments. In this simulation the mould (graphite) was again taken to
be at constant temperature. In Fig. 7 we can see a particular exam-



Fig. 7. Solid/liquid Interface position generated by the COMSOL model for a wedge of angle a ¼ p
4 at various times. The centreline represents a line of symmetry. Parameter

values used in this model were hc ¼ 850 W K�1 m�2; ha ¼ 10 W K�1 m�2; � ¼ 0:5.

Fig. 8. Wedge experiment temperature data compared with the temperature readings taken from corresponding points in the COMSOL model. As of yet the only fitting of
parameters has been done by eye. The heat transfer coefficients used here were hc ¼ 850 W K�1 m�2; ha ¼ 10 W K�1 m�2 and � ¼ 0:5.
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Fig. 9. Cross-sectional cut of the solidified silicon (see Fig. 7). We can see from decreased grain size that the solidification was much quicker at the edges in contact with
graphite and air (bottom and left). In general, grain growth is in the same direction as the motion of the solidification front. Here we can see at least two predominant growth
directions (from each exposed edge). A yellow line has been drawn to indicate roughly where the two solidification fronts may have met. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. The solidification fronts predicted by the quasi-steady ‘Triangle model’
plotted at several times for wedge angle a ¼ p

4 and typical parameter values,
hc ¼ 850 W K�1 m�2; ha ¼ 10 W K�1 m�2, � ¼ 0:5. We have also marked the solid-
ification point ð0 m;0:14 mÞ at which the fronts met at t ¼ 417 s. We can compare
the positions of these solidification fronts directly with those in the COMSOL
simulation in Fig. 7.
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ple of the calculated position of the phase-boundary at various
times.

Analytical methods have been applied to the problem of solidi-
fication in a wedge by several others see [20–24]. However, as with
the slab geometry difficulties arise in finding analytical solutions in
the presence of boundary conditions other than Dirichlet or Neu-
mann. Furthermore, these analytical solutions require that the
wedge extends to infinity. Here we present a simple yet unexpect-
edly insightful ‘Triangle model’ which yields an analytical solution
for the solidification problem with Robin boundary conditions
(which correspond to Newton’s law of cooling) in a wedge of finite
size.

The thermal history of the silicon was measured by four pyrom-
eters at various heights and four pyrometers were also planted into
the surrounding graphite blocks. The silicon pyrometer data, was
used to determine the heat transfer coefficients by fitting the
results of the COMSOL model, as shown in Fig. 8. The approximate
best parameter values from this fit are hc ¼ 850 W K�1 m�2; ha ¼
10 W K�1 m�2; � ¼ 0:5.

3.2. Triangle model

Fig. 9 shows a cross-sectional cut taken from the experiments.
The relatively uniform direction of grain growth from each respec-
tive edge indicates that the solidification fronts move away parallel
to the graphite and air surfaces and do not interact much. This sug-
gests that perhaps a 1D model is appropriate at each boundary and
we use the quasi-steady approximation for each of the three one
dimensional problems. By symmetry we only need to consider
the right-half of the wedge, and so take the solidification front
from the air surface to be a straight line y1 ¼ a1xþ b1ðtÞ and the
front from the graphite to be the horizontal line y2 ¼ b2ðtÞ. Neglect-
ing radiation to make the algebra easy we find that as a function of
time

y1 ¼ cot
a
2
xþ csc

a
2
s1 tð Þ ¼ cot

a
2
xþ 1

Nc
csc

a
2

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2KN2

c t
q� 	

;

y2 ¼ 1
Na

1þ Na �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2KN2

at
q� 	

; ð31Þ

where a is the wedge angle, and Nc and Na are the conductive and
convective Nusselt numbers. We can derive similar expressions for
the case where we include radiation and linearise the boundary
conditions in equation (4). In Fig. 10 we see how these solidification
fronts evolve over time. Note this solution can be derived as the
outer solution of a small-angle approximation but where each angle
must be thought of as being small. In Fig. 11, which accounts for
conduction, convection and radiation (linearised where necessary),
we compare the predicted solidification times, t�, and solidification



Fig. 11. Comparison of the predictions of the solidification times (dimensional t�) and solidification distance (nondimensional D=d) for both the COMSOL and the simplified
Triangle model described in (31) with linearised radiation conditions. All the solidification fronts meet at ð0;DÞ where D is the solidification distance measured from the
bottom tip of the wedge. We plot the fraction D=d where d is the depth of the bottom tip of the wedge.
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position (0; D=dÞ of the Triangle model with the COMSOL model, as
we vary the wedge angle a. The two models compare very well and,
in fact, as a ! 0, the solidification times of the two models appear
to converge and the solidification distances do not differ by more
than about 5%.
4. Conclusions

We have developed mathematical models in both one and two
dimensions for the solidification of silicon. The one-dimensional
model relates to a set of thin-casting experiments. We were able
to compare the models to the temperature measurements, thereby
estimating the heat transfer coefficients. With a fitted model, it
was possible to predict the time taken for the material to com-
pletely solidify and the place where the solidification fronts met.
The solidification distance can be validated by casting samples,
where it is possible to observe a discontinuity in the grain
microstructure. Further work could include this validation as well
as a quantitative analysis of the grain size, via the time-averaged
cooling rates and a reference curve such as Forwald discusses [2].

One extremely useful approximation is the quasi-steady
approximation, which is equivalent to the case of small Stefan
number. This particular model provides analytical results for the
solidification time and distance which agree very well with the
full-scale numerical solutions on Matlab and COMSOL.

The two-dimensional model relates to a wedge casting experi-
ment. Using temperature measurements, we were able to estimate
the heat transfer coefficients and thus obtained a good predictive
numerical solution. If we assume that the solidification fronts
move from each wedge wall independent of each other then we
can use three separate one-dimensional quasi-steady approxima-
tions to create a ‘Triangle model’. This predicts that the area of liq-
uid silicon will diminish as shrinking self-similar triangles. This
simplified model provides analytical results for the solidification
time and distances which agree very well with the COMSOL simu-
lation. The approximation becomes more accurate as we decrease
the wedge angle a.
This initial investigation may now be extended to investigate
impurities, their distribution, and the resulting impact on the sili-
con microstructure. The internal stresses and flow of the solidify-
ing silicon could be explored as experimental observations show
it expands, cracks and has significant gas movement as solidifica-
tion progresses. We also add to the list of future work a more
detailed analysis of the grain boundary data, with more accurate
estimates for the solidification lines shown in Figs. 6 and 9.
Although the present results have been shown to agree well with
experimental data, including these additional effects, would lead
to a more accurate quantitative results.
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