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A theory is presented for wave-driven propulsion of floating bodies driven into oscillation
at the fluid interface. By coupling the equations of motion of the body to a quasi-
potential flow model of the fluid, we derive expressions for the drift speed and propulsive
thrust of the body which in turn are shown to be consistent with global momentum
conservation. We explore the efficacy of our model in describing the motion of SurferBot
[Rhee et al. Bioinspir. Biomim. 17 (5), 2022], demonstrating close agreement with the
experimentally determined drift speed and oscillatory dynamics. The efficiency of wave-
driven propulsion is then computed as a function of driving oscillation frequency and
the forcing location, revealing optimal values for both of these parameters which await
confirmation in experiments. A comparison to other modes of locomotion and applications
of our model to competitive water-sports are discussed in conclusion.

1. Introduction

From flagellar beating of spermatozoa to water-walking insects, from the wave-like
lateral flexions of fish to flying, nature has evolved myriad strategies for locomotion
and propulsion in fluidic environments (Hu et al. 2003; Bush & Hu 2006; Bühler 2007;
Gaffney et al. 2011; Eloy 2012; Smits 2019). A perhaps lesser-known propulsion mech-
anism is enacted by honeybees (Apis mellifera) trapped on the surface of water: in
oscillating its wings, the bee generates a fore-aft asymmetric wavefield that contributes
in part to forward motion (Roh & Gharib 2019). Inspired by the striken honeybee,
Rhee et al. (2022) designed SurferBot: a centimeter-scale interfacial robot that achieves
wave-driven locomotion speeds of around ∼1 cm/s by inducing asymmetric vibrations
with a small eccentric motor. Wave-driven propulsion may also be realized by designing
floating bodies with mass- and/or geometric-asymmetries that generate thrust and
torques by exchanging momentum with waves generated by the object as it oscillates
on the free surface of a globally vibrating fluid bath (Ho et al. 2021; Barotta et al.

2023). At much larger scales, Benham et al. (2022) achieved wave-driven locomotion
speeds of around ∼1 m/s by forcing a canoe into oscillations by jumping up and down
on its gunwales, a technique known as gunwale bobbing. In this case a simple wave-
equation model was derived by treating the canoe as an oscillating pressure source
with a prescribed motion, ignoring the effects of dispersion and considering an idealised
Gaussian canoe shape. Although outside the scope of the present work, other studies have
investigated alternative routes to wave-driven propulsion including symmetry-breaking
due to the presence of boundaries (Tarr et al. 2023) and using acoustic radiation forces
(Sabrina et al. 2018; Roux et al. 2022; Martischang et al. 2023).

† Email address for correspondence: graham.benham@ucd.ie
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Figure 1: Thrust scaling FT (1.1) plotted against drag scaling FD (1.2) for a variety
of different bodies oscillating at the water surface (forces are taken as per unit width).
Parameter values for each case are given in Table 1 in Appendix A. We observe that
thrust balances drag with a ratio of 0.001− 0.1.

Based on classical results (Longuet-Higgins & Stewart 1964; Longuet-Higgins 1977),
the prevailing opinion is that the thrust necessary to drive locomotion originates from an
asymmetric radiation of wave momentum (Ho et al. 2021; Rhee et al. 2022). A scaling
argument for two-dimensional wave-driven propulsion (i.e. restricted to the vertical plane)
is as follows: Consider a body of length L oscillating at the interface of a fluid with density
ρ and kinematic viscosity ν in the presence of gravity g. If the oscillations have amplitude
A, frequency ω, and wavenumber k, the thrust due to oscillating waves (per unit width)
scales† like

FT ∼ ρv2/k, (1.1)

where v = Aω is the speed associated with the oscillations (Longuet-Higgins & Stewart
1964). Forward motion at speed U results in an inertial drag force that scales like

FD ∼ ρCDU2L, (1.2)

where CD is a drag coefficient. By considering a number of known examples of wave-
driven propulsion (Fig. 1), we demonstrate that thrust (1.1) balances drag (1.2) with a
ratio of 0.001− 0.1, indicating the range of prefactor values associated with (1.1).
Whilst the foregoing scaling argument performs well in capturing the thrust-drag

balance, it fails to provide further insight into the problem. For example, there is no
way of predicting the prefactors of the scalings or the related efficiency of propulsion.
Further, without a model of the wavefield, momentum conservation cannot be verified. We
herein present a theoretical model for wave-driven propulsion in the case of a raft floating
at the fluid interface undergoing small-amplitude oscillations due to an external force.
The equations of motion for the raft are coupled to a quasi-potential flow model of the
fluid dynamics (Dias et al. 2008). Propulsion is demonstrated in the form of a constant
drift speed that results from a time-averaged thrust force due to the oscillations. We
compare our predictions for the wavefield and raft motion with the experimental data
of SurferBot (Rhee et al. 2022), and then use our model to optimize the efficiency of
propulsion by varying the frequency of vibrational forcing and the position at which

† This assumes that the fluid pressure applies over a distance ∼ 1/k.
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Figure 2: (a) A raft of length L oscillating on the surface z = η(x, t) of a fluid of depth
H self-propels with a drift-velocity U thanks to a self-generated wavefield. (b) Schematic
diagram of the raft dynamics (in the moving frame). The raft is subject to an oscillatory
external force FA = (FA,x(t), FA,z(t)) applied at position xA (in the frame of the raft).
The applied force gives rise to small horizontal and vertical oscillations ξ(t) and ζ(t), in
addition to planar rotations with angle θ.

the forcing is applied. Some possible extensions and applications of our model to insect
locomotion and competitive water sports are discussed in conclusion.

2. Theoretical model for an oscillating raft

Whilst scaling arguments for wave-driven propulsion show some success in predicting
drag and thrust (see Fig. 1), there is no existing theory to model wave-driven dynamics
that in turn can be used quantitatively to predict and maximise the efficiency of propul-
sion. In the following section we build such a model, first by formulating the equations
of motion for a floating raft in two dimensions, then by accounting for the coupled fluid
flow problem using quasi-potential flow theory.

2.1. Equations of motion for the raft

Let us consider a two-dimensional body of fluid with the horizontal and vertical
coordinates given by x and z, respectively. A floating raft of length L resting on the
fluid surface is subject to an applied periodic force FA = (FA,x(t), FA,z(t)) imposed at
position xA = (xA, zA) measured from the raft centre of mass (Figs. 2(a) and (b)). In
response to FA it is assumed that the centre of mass of the raft X undergoes small
oscillations in the x- and z-directions, whilst translating horizontally with an a priori

unknown constant drift speed U . The action of FA also induces a torque that gives rise
to oscillations in the x − z plane, the rotation vector given by θ = θ(t)j where the unit
vector j points out of the page.
The equations of motion for the position and orientation of the centre of mass of the

raft are

mẌ = FA +

ˆ

S

(p− pa)n dx− FD, (2.1a)

Iθ̈ = xA × FA +

ˆ

S

(p− pa)x× n dx, (2.1b)

where m is the mass (per unit width) of the raft and I = mL2/12 is moment of inertia of
the raft (per unit width), taken as the value for a rod rotating about its centre of mass.
The second term on the right-hand-side of Equation (2.1a) is the force arising from fluid
pressure, p, minus its atmospheric value pa, where the vector n is the unit normal to the
raft surface, S, pointing in the positive z direction. The drag force is approximated using
an empirical drag coefficient such that

FD =
1

2
CDρL|Ẋ|Ẋ. (2.2)
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The torques on the right-hand-side of Equation (2.1b) are those arising from their
corresponding forces in Equation (2.1a). Drag on rotational motion is assumed to be
negligible. We note the omission of a gravitational term in (2.1a) which is balanced by
the pressure integral term in the steady state. While we do not go into details, the steady
contribution to the pressure is a combination of surface tension (acting at the edges of
the raft) and Archimedes buoyancy. We assume that the mass of the raft is such that
this balance is sustained and hence we ignore the gravitational term from the momentum
Equation (2.1a).
Consistent with experiments (Rhee et al. 2022), the applied force is taken to be periodic

and can be written as

(FA,x, FA,z) = (F̂A,x, F̂A,z)e
iωt, (2.3)

where F̂A,x, F̂A,z are small complex constants (incorporating both amplitude and phase).
In response, the position of the centre of mass of the raft is

X = (X(t), Z(t)) = (Ut+ ξ(t), ζ(t)), (2.4)

where

(ξ, ζ) = (ξ̂, ζ̂)eiωt, ξ̂, ζ̂ ∈ C, (2.5)

represent small horizontal and vertical oscillations, respectively (Fig. 2(b)). The profile
of the raft is thus described by

z = Z(t) + (x −X(t)) tan θ(t) on : |x−X(t)| 6 L/2, (2.6)

where

θ = θ̂eiωt, θ̂ ∈ C. (2.7)

Likewise, the fluid pressure reads

p = pa + p̂eiωt, (2.8)

where p̂ = p̂(x, z) is a complex function.
Before going further, we pause to discuss the steady drift speed, U . The hypothesis

of this paper is that steady drift is a result of a balance between the propulsion due to
waves and the resultant inertial drag. We propose that the propulsion due to waves is
given by the time-averaged x-component of the pressure integral term in (2.1a) and that
this thrust force is given by

FT =

ˆ

S

(p− pa) (n · i) dx, (2.9)

where the overhead-bar notation denotes time-averaging and i is a unit vector in the
horizontal. As shown in Appendix B, the time-average of the drag term (2.2) is well-
approximated by the component due to steady drift U , while drag due to oscillations is
comparatively small. Hence, the drag in the x-direction† approximates to

FD ≈ 1

2
CDρLU2. (2.10)

Since the drag term (2.10) is approximately the same as it would be for steady flow past

the raft, we use Blasius’ theory of flow past a flat plate to estimate CD = 1.33 · Re−1/2

in terms of the Reynolds number Re = UL/ν (Schlichting & Gersten 2016).
From the above analysis, it is clear that the time-averaged thrust (2.9) and drag forces

† We note that the time-averaged drag in the vertical direction is zero FD · k = 0, and so we
write FD · i = FD to simplify notation.
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(2.10) are both second order. In other words, if F̂A,x, F̂A,z = O(ǫ) then FD, FT = O(ǫ2).
Consequently, by taking a square root of the thrust-drag balance (FT = FD), we see
that U = O(ǫ).
To fully determine U by equating (2.9) and (2.10) requires a fluid dynamics model

for the pressure p in Equation (2.9). Likewise, the fluid pressure determines the first-
order dynamics of the raft. Specifically, after substituting (2.3), (2.5), (2.7) and (2.8)
into Equations (2.1) and linearizing, the first-order oscillating dynamics are described by

−mω2ξ̂ = F̂A,x, (2.11a)

−mω2ζ̂ = F̂A,z +

ˆ L/2

−L/2

p̂|z=0 dx, (2.11b)

− 1

12
mω2θ̂ = xAF̂A,z +

ˆ L/2

−L/2

xp̂|z=0 dx. (2.11c)

Equations (2.11) provide a relationship between the constants F̂A,x, F̂A,z, xA, and the

constants ξ̂, ζ̂, θ̂, given p̂ calculated by formulating the corresponding fluid flow problem.

2.2. Quasi-potential flow

The body of fluid is assumed to be irrotational and infinitely wide with a finite depth
H and a free surface at z = η(x, t), such that −∞ < x < ∞ and −H 6 z 6 η. Following
the approach of Dias et al. (2008), the velocity for a weakly damped† flow can still be
modelled as the gradient of a potential function φ(x, z, t) to good approximation. Due to
incompressibility, φ satisfies

∇2φ = 0. (2.12)

The linearised kinematic condition applies on the water surface, such that

φz = ηt − 2νηxx : on z = 0. (2.13)

On the raft the linearised kinematic condition takes the form

φz = ζ̇ + xθ̇ : on z = 0, |x−X | 6 L/2. (2.14)

In addition, the unsteady version of Bernoulli’s equation applies within the fluid which,
upon linearisation, becomes

φt + gz +
p

ρ
+ 2νφzz =

pa
ρ
. (2.15)

After applying the dynamic boundary condition p − pa = −γηxx on the free surface,
(2.15) yields

φt + gη − γ

ρ
ηxx + 2νφzz = 0 : on z = 0, |x−X | > L/2, (2.16)

where Laplace pressure introduces the surface tension γ. Finally, the bottom surface is
impermeable, such that

φz = 0 : on z = −H. (2.17)

In the same manner as §2.1, we seek solutions of the form φ = φ̂eiωt, η = η̂eiωt, where
φ̂ = φ̂(x, z), η̂ = η̂(x) are complex functions.

† We choose to include viscosity in our model so as to replicate the spatial decay in waves
observed in experiments (see Fig. 5).



6

Henceforth, we formulate the fluid flow problem in the moving reference frame, x →
x + Ut. However, we restrict our attention to the case where the drift speed is much
smaller than the typical wave speed, such that U ≪ √

gL. In this way, we focus on the
flow resulting from the oscillations, rather than the drift velocity.
The boundary conditions (2.13), (2.14), (2.16) and (2.17) are combined with (2.12) to

give the governing system

∇2φ̂ = 0, (2.18a)

φ̂z =
γ

ρg
φ̂zxx +

ω2

g
φ̂+ 4iνωφ̂xx : on z = 0, |x| > L/2, (2.18b)

φ̂z = i(ζ̂ + xθ̂) : on z = 0, |x| 6 L/2, (2.18c)

φ̂x = ±ikφ̂ : on x = ∓ℓ, (2.18d)

φ̂z = 0 : on z = −H. (2.18e)

For the purpose of numerical simulation, the domain is rendered finite of length ℓ in the
x direction. Radiative boundary conditions (Equation (2.18d)) are chosen at the left- and
right-hand boundaries to avoid reflection, where k satisfies the dispersion relation

ω2 = k tanh kH

(

g +
γ

ρ
k2
)

+ 4iνωk2. (2.19)

The final step in linking together the fluid-raft interaction is calculating the thrust force
FT (2.9) in terms of the pressure and normal vector, noting that to leading order n · i ≈
−ηx. From (2.15) the pressure on the raft is given by

p̂ = −ρ(iωφ̂+ gη̂ + 2νφ̂zz)|z=0. (2.20)

Meanwhile, on the free surface the wavefield is given by the solution to the kinematic
condition (2.13), such that

iωη̂ − 2νη̂xx = φ̂z |z=0, (2.21)

which is accompanied by radiative boundary conditions (similar to (2.18d)) at x = ∓ℓ

and continuity boundary conditions on the raft, namely η̂ = ζ̂ ± θ̂L/2 on x = ±L/2.

2.3. Summary

Let’s now summarise the governing system of equations. Given constants F̂A,x,F̂A,z

and xA, the dynamics of the raft are determined by Equations (2.11), coupled to the
fluid flow problem given by Equations (2.18) via the pressure (2.20). The drift speed U
is then calculated by equating thrust (2.9) and drag (2.10), where FT follows from the
solution via p̂ and η̂. The problem is solved numerically in MATLAB using a combination
of finite differences† to solve the PDE system (2.18) and Newton’s method to resolve the
coupling with (2.11). Example code is provided in the Supplemental Materials.

3. Model results, validation and application to SurferBot

We begin this section by exploring the numerical results of our model, demonstrating
that it is satisfies a conservation of momentum balance. We then consider a specific
application of our model to SurferBot (Rhee et al. 2022) comparing our results directly
with experimental data.

† A large numerical domain is used, ℓ,H ≫ L, such that the solution does not depend on ℓ
and H .
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(a) (b)

Figure 3: Velocity potential (taken as the imaginary part rescaled by ωL2) in the case

of (a) pure pitching ζ̂/L = 0, θ̂ = 0.1, and (b) pure heaving ζ̂/L = 0.01, θ̂ = 0, of a 1 m
long raft oscillating at 1 Hz on the surface of water.

3.1. Numerical results and momentum balance

Motivated by large-scale examples of bodies oscillating at the water surface
(Benham et al. 2022), as a simple demonstration of the fluid flow problem, we solve
Equations (2.18) numerically in the case of a 1 m long raft oscillating at 1 Hz on the
surface of water (ρ = 1000 kg/m3, γ = 0.073N/m, ν = 10−6m2/s). For the sake of

simplicity we restrict our attention to pure pitching (ζ̂ = 0) and pure heaving (θ̂ = 0),
ignoring in the first instance the coupling to the forcing constants in Equations (2.11).
The velocity potential is plotted in Fig. 3 in the case of pure pitching (a) and pure
heaving (b). As anticipated, FT = 0 for both these cases since both heaving and pitching
are required to generate thrust‡.
Next, we validate our numerical scheme using a conservation of momentum balance.

As shown in Appendix C and first discussed by Longuet-Higgins & Stewart (1964), an
expression for the thrust force can be derived via integration of the Euler equations. This
results in an equivalence between FT and the momentum flux of the form

FT =

[

ˆ η

−H

(ρu2 + p) dz

]x=−ℓ

x=ℓ

. (3.1)

The term on the right-hand side is the difference in mean momentum-flux between
backward and forward directions (including the pressure difference). Hence, when larger
waves propagate backwards than forwards, this results in a positive thrust. In Appendix C
we show how to calculate this balance in the case where surface tension and viscosity are
neglected. Calculating the left- and right-hand sides of Equation (3.1) numerically for a
range of ω yields very close agreement between the two (Fig. 4), giving us confidence that
the numerical scheme is accurate and consistent with global momentum conservation.
It should be noted that whilst our model accurately conserves momentum, it neglects

any possible contribution to thrust from vortex shedding since the fluid is considered
irrotational. It is well-known that some forms of insect locomotion rely on both vortex
shedding and capillary wave propagation (Bush & Hu 2006; Bühler 2007). To incorporate
thrust from any vortices generated by the motion would require a model for rotational
fluid flow, which we leave for a future study. However, by comparing our model with
SurferBot in the next section, we will see that our predictions perform well despite

‡ Although both heaving and pitching are required to generate thrust in the case of vanishingly
small drift velocity, it is not clear if this remains true at large drift velocities in general
(Benham et al. 2022).
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Figure 4: Comparison between the numerically calculated thrust FT and momentum
flux across the domain (Equation (3.1)) showing close agreement between the two.
Comparison is also made with the scaling proposed by Longuet-Higgins (see Appendix
C) exhibiting only qualitative agreement. Surface tension and viscosity are neglected for
the purpose of these calculations.

neglecting vorticity, suggesting that in the present case vortices are not the leading-order
driver of propulsion (Barotta et al. 2023).

3.2. Comparison with SurferBot

To demonstrate a specific application of our model, we calculate the dynamics of
SurferBot (Rhee et al. 2022), for which dimensional parameter values are given in Table
1 in Appendix A. In this case, the force is applied via an eccentric motor positioned at
xA = −3mm from the centre of the raft. The forces FA,x, FA,z, are assumed to be out
of phase, and are estimated using a scaling law relating the mass (per unit width) of the
raft m = 2.6 g/3 cm and the oscillation amplitude A = 150µm, such that

(F̂A,x, F̂A,z) = mω2A (i, 1). (3.2)

This results in a drift speed of U ≈ 2 cm/s, compared with an experimentally measured
speed of ∼ 1.8 cm/s. A comparison between the experimental and theoretical self-
generated wavefield is plotted in Figures 5(a) and (b), whilst the time-varying position
of the back and front of SurferBot are shown in Figures 5(c,e) (experimental) and
5(d,f) (theoretical). Overall, the results of our theoretical model exhibit good qualitative
agreement with experiments and yields an excellent prediction of the drift speed, U .
However, there is disagreement in the amplitude of the wavefield and hence the oscillation
amplitude of SurferBot, in addition to the decay length-scale of the waves. However, these
discrepancies are likely attributed to some obvious differences between experiment and
theory, including the precise form of the oscillatory forcing, three-dimensional effects of
both the SurferBot geometry and wavefield, or indeed the flexure of the SurferBot body
contributing to wave damping.
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Figure 5: Comparison between the experimental wave amplitude from (a) SurferBot and
(b) the mathematical model. In (b), the theoretical wave amplitude (red) is scaled by
√

2L/πx to be consistent with the far-field behaviour of Bessel functions (since in practice
the waves extend radially to the far-field). The unscaled wave amplitude is shown as
a dotted black line. (c,d,e,f) Comparison between the experimental and theoretically
predicted position of the aft (c,d) and fore (e,f). In the theoretical predictions (d) and
(f), xaft = X− (1/2, θ/2)L and xfore = X+ (1/2, θ/2)L. Experimental data reproduced
with permission.

4. Efficiency and optimization

Furnished with a theoretical model describing the SurferBot dynamics, we can inter-
rogate the efficiency of propulsion and optimize the parameters of SurferBot thereafter.
The efficiency of propulsion is given in terms of the applied and useful (propulsive) power.
The total applied power is given by

PA = FA,z ζ̇ + xAFA,z θ̇, (4.1)

the sum of linear and angular contributions†. The propulsive power is taken as PT = FTU
and the efficiency is defined as χ = PT /PA. Hence, in the case of SurferBot (before
optimization), we calculate an efficiency value of χ = 1.8% from our mathematical model.

The two parameters we attempt to optimize are the driving frequency ω/2π and the
horizontal position of the forcing, xA. We assume that the horizontal force F̂A,x = 0 (as
it doesn’t contribute to forward thrust anyway) and that the total power (4.1) is fixed‡
at the value calculated for SurferBot, PA = 7.2 × 10−4W/m. Efficiency is plotted as a
function of ω/2π and xA in Figure 6 showing an optimum frequency of 16 Hz and an

† There is also a contribution FA,xξ̇ to PA which vanishes because FA,x and ξ̇ are out of
phase due to (2.11a).

‡ The applied force F̂A,z must change to maintain constant power at variable frequency.
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(a) (b)

Subsonic limit

Figure 6: (a,b) Optimization of SurferBot efficiency χ by varying the frequency and the
motor position whilst maintaining constant total applied power PA. The optimum values
(illustrated with black dots) are the outcome of a two-parameter optimisation, and hence
the plotted curves are slices of the two-dimensional efficiency surface at its maximum.

optimum motor position of 5 mm behind the raft centre, both of which could be readily
tested in a future experiment.
In a similar manner to the discussion in §1, it is also possible to derive a very rough

estimate of efficiency using scaling arguments. To do so we may assume that the total
power PA (4.1) can be split into the contribution from propulsive power, which scales like
PT ∼ FTU , and the power radiated away by the waves, which scales like Pwave ∼ FT cg,
where cg = dω/dk is the group velocity of the waves. The efficiency then scales like

χ ∼ 1

1 + 1/Ma
, (4.2)

where Ma = U/cg is the Mach number. In the case of SurferBot we find χ ∼ 3.5%,
which is in broad agreement with the model calculation χ = 1.8%. However, such a
scaling argument obviously provides no means for optimization. Nevertheless, it indicates
that efficiency may increase with Mach number, which is probably due to a decrease in
forward-propagating waves as the motion approaches the supersonic limit (which we
discuss further shortly). We also note that due to the scaling (4.2), it is estimated that
subsonic flows Ma < 1 have a maximum possible efficiency of χ ∼ 1/2, which we indicate
with dashed lines in Figure 6.

5. Discussion and perspectives

Using linear quasi-potential flow theory, coupled with the equations of motion for
an oscillating raft, we have demonstrated how the raft propels itself forward using its
own waves. The close agreement between our linear model and the experimental data of
SurferBot (Rhee et al. 2022) indicates that we have captured the key physics at play
for this self-propelling centimetre-scale robot. Nevertheless, there are several further
improvements to the model that are worth discussing.
The assumption of a vanishingly small drift velocity is worth revisiting. In a future

study a finite drift-speed could be incorporated into the fluid-flow problem. This would
require transforming Equations (2.18) to a moving reference frame, thereby introducing
new derivative terms of the potential. Consequently, the dispersion relation (2.19) would
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need to be modified and may result in multiple-wavenumber solutions for forward and
backward travelling waves. An initial resolution to this problem could involve studying
a small but finite drift speed using the method of asymptotic expansions.

A finite drift-speed incorporated into the model would result in a Doppler-shifted wave-
field, as discussed by Benham et al. (2022). In this case, a key dimensionless parameter
is the Mach number, Ma, which is defined as the ratio between the drift speed U and
the group velocity of the waves cg. The Mach number is closely related to whether or
not forward (in addition to backward) waves are propagated. Specifically, if the drift
speed is larger than the wave speed for a particular wavenumber, this indicates that
such a wave can only propagate behind the object and not in front of it. Since the
momentum balance (3.1) indicates that larger forward waves reduce the forward thrust,
we would expect more efficient motion at higher Mach numbers (which is consistent
with the scaling (4.2)). The value of the Mach number and hence the shape of the
wavefield varies considerably for different cases of wave-driven propulsion. For example,
the wavefield of SurferBot (Ma = 0.04) is markedly different to that of gunwale bobbing
on a paddleboard (Ma = 1.7)†. The former produces significant waves both forwards and
backwards, whereas the latter has purely backward waves (e.g. compare Figure 3(a) of
(Rhee et al. 2022) with Figure 1(a) of (Benham et al. 2022)).

By considering a finite drift-speed, one can then study how symmetry is broken when
oscillations commence (i.e. the start-up problem for wave-driven propulsion). One could
investigate, for example, how perturbations grow or decay from a stationary state when
subjected to oscillations. This would then help determine the necessary conditions for
initiating forward propulsion under different operating conditions. Therein lie numerous
optimization problems, such as the optimal control of a single oscillator (or multiple
oscillators) with variable positions or masses, not to mention the optimization of the
shape of the raft itself. One could also consider different optimization objectives, such as
maximising speed as well as efficiency.

A rotational fluid model could be developed to account for propulsion due to both
vortex shedding and wave propagation. Whilst the present irrotational model performs
well in the case of SurferBot, it is well-known that vortices play a significant role in
the locomotion of water striders which are smaller and faster than SurferBot (Bühler
2007). At larger scales (e.g. in the case of gunwale bobbing) it is not known what role
vorticity plays. However, by developing a rotational fluid flow model, one could establish
the regimes in which vorticity can be neglected as a means of propulsion.

One could extend the model to account for a three-dimensional flow field rather than
the two spatial dimensions studied here. In such a model a more realistic representation of
the SurferBot geometry (or other examples) could be rendered. This could then capture
the anisotropic wavefield emitted by the rectangular-shaped SurferBot and what effect
this has on the thrust calculations studied here. Further, the model described herein
assumes that the raft is subject to an external, local force, motivated in part by the
physical design of the SurferBot and the eccentric mass motor that drives propulsion. An
interesting extension to the present work would be to consider another form of symmetry-
breaking wherein a raft with variable mass density along its length self-propels due to the
global vibration of the fluid bath (Ho et al. 2021; Barotta et al. 2023), a scenario akin to
walking droplets (Couder et al. 2005; Bush 2015).

In closing, it is worth discussing some of the potential applications of this work.

† The Mach number is defined slightly differently from Benham et al. (2022), who used the
phase velocity cp rather than the group velocity cg in the denominator, resulting in different
quoted values.
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Firstly, as indicated by Rhee et al. (2022), studies on wave-driven propulsion may serve
as a way to better understand how insects move when floating on the water surface.
Secondly, boat oscillations during rowing and canoe races (due to the strokes of athletes)
may affect performance due to wave-body interactions. For example, Dode et al. (2022)
studied how fluctuations in the horizontal speed may affect rowing efficiency. However,
in the case of the vertical component of these oscillations, the impact on efficiency is
uncertain (Benham et al. 2022). Hence incorporating a finite drift-speed into the current
model could be leveraged to optimize stroke styles to improve race times. Another
extension of this work could include the interactions between multiple bodies. This may
find application in the context of ducklings benefiting from their mother’s wavefield
(Yuan et al. 2021), or in rowing/canoe races where boats may gain an advantage by
interacting with the wavefields of their opponents.
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The code used to solve this problem is found at:
https://maths.ucd.ie/~gbenham/waves_code.zip

Appendix A. Table of propulsion data

The data used in Figure 1 of the main text is listed in Table 1. To estimate the drag
coefficients for these different cases we have used Blasius’ theory of flow past a flat plate,
CD = 1.33 ·Re−1/2 in terms of the Reynolds number Re = UL/ν (Schlichting & Gersten
2016). This of course neglects the effects of the shape and aspect ratio, but nonetheless
provides a useful scaling that applies across many orders of magnitude in length scale.
The wavenumber k is found for each case by solving the dispersion relation for deep water
waves, ω2 = gk + γk3/ρ.

Appendix B. Approximation of drag term

Drag is treated by inserting Ẋ = (U + ξ̇, ζ̇) into Equation (2.2) and taking the time
average. In this way, we arrive at

FD =
1

2
ρCDL3ω2

∣

∣

∣

∣

∣

U
ωL + i ξ̂Le

iωt

i ζ̂Le
iωt

∣

∣

∣

∣

∣

(

U
ωL + i ξ̂Le

iωt

i ζ̂Le
iωt

)

. (B 1)

We note that both ξ̂/L and ζ̂/L are O(ǫ). Hence, the drag in the x-direction can be
Taylor expanded to give

FD · i ≈ 1

2
CDρLU2 (B 2)

which makes use of the fact that
(

ωL2

Uζ̂

)2

≪ 1 (B 3)

is a small quantity (e.g. (ωL2/Uζ̂)2 ≈ 0.06 in the case of SurferBot).

https://maths.ucd.ie/~gbenham/waves_code.zip
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Type of motion U (m/s) L (m) f (Hz) A (m)

Capillary surfer (Ho et al. 2021) 2.8×10−3 6.4×10−3 1×102 8.2×10−5

Water strider (Hu et al. 2003) 1.5 1×10−2 1×102 1×10−2

Honeybee (Roh & Gharib 2019) 4×10−2 1.5×10−2 60 2×10−3

Surferbot (Rhee et al. 2022) 1.8×10−2 5×10−2 80 150×10−6

Longuet-Higgins’ raft (Longuet-Higgins 1977) 0.125 0.25 3 2×10−2

Paddleboard bobbing (Benham et al. 2022) 0.8 3.05 1.67 5×10−2

Canoe bobbing (Benham et al. 2022) 1.25 4 1.25 0.1

Table 1: Parameters used in Figure 1 and their references. The type of fluid in all
cases is water, for which ρ = 1000 kg/m3, γ = 0.073N/m, ν = 10−6m2/s, except the
capillary surfer, for which the fluid is a water-glycerol mixture and the parameters are
ρ = 1176 kg/m3, γ = 0.0664N/m and ν = 1.675× 10−5m2/s. The frequency f = ω/2π.

Appendix C. Momentum balance

We start by neglecting viscosity and writing down the two-dimensional (nonlinear)
Euler equations for incompressible fluid flow in the presence of gravity, which are

ux + wz = 0, (C 1)

ut + uux + wuz = −1

ρ
px, (C 2)

wt + uwx + wwz = −1

ρ
pz − g. (C 3)

By adding together (C 1) (multiplied by u) and (C 2) we get

ut +
[

u2
]

x
+ [uw]z = −1

ρ
px. (C 4)

This can be integrated vertically to give
ˆ η

−H

ρut dz +

ˆ η

−H

[

ρu2 + p
]

x
dz + ρu(ηt + uηx)|z=η = 0, (C 5)

where we have used the impermeability and kinematic boundary conditions

w = 0 : z = −H (C 6)

w = ηt + uηx : z = η(x, t). (C 7)

Next, we use the Leibniz rule and cancel terms to get

∂

∂t

ˆ η

−H

ρu dz +
∂

∂x

ˆ η

−H

(

ρu2 + p
)

dz = pηx|z=η . (C 8)

Let’s now restrict our attention to oscillating waves which are periodic in time. Hence,
by taking the time-average of (C 8), the first term vanishes. Meanwhile, the rest of the
equation becomes

d

dx

[

ˆ η

−H

(ρu2 + p) dz

]

= (pηx|z=η). (C 9)
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Next, we integrate from right to left (i.e. from x = ℓ to x = −ℓ), giving

[

ˆ η

−H

(ρu2 + p) dz

]x=−ℓ

x=ℓ

= FT , (C 10)

where FT is the mean horizontal force generated by surface gradients

FT =

ˆ ℓ

−ℓ

(−pηx|z=η) dx. (C 11)

This equates to Equationn (2.9) upon linearisation of the normal vector.
Next, we apply the foregoing calculation to a potential flow example in the absence of

viscosity and surface tension, γ = ν = 0, since the calculation is much simpler. In the
case of an oscillating raft, as described in the main text, the pressure within the fluid is
given by the (linearised) Bernoulli’s equation

p = pa − ρ(gz + φt). (C 12)

However, on the free surface z = η (outside the raft region), the pressure is set by the
dynamic boundary condition p = pa. Hence, the force (C 11) becomes

FT = ρ

ˆ L/2

−L/2

(gη + φt)ηx|z=0 dx. (C 13)

The term on the left hand side of (C 10) approximates to

[

ˆ η

−H

(ρu2 + p) dz

]x=−ℓ

x=ℓ

≈
[

ρ

ˆ 0

−H

φ2
x dz

]x=−ℓ

x=ℓ

. (C 14)

Hence, in the linear case the momentum balance (C 10) takes the form

[
ˆ 0

−H

φ2
x dz

]x=−ℓ

x=ℓ

=

ˆ L/2

−L/2

(gη + iωφ)ηx|z=0 dx. (C 15)

We confirm this balance by numerical calculation in Figure 4 of the main text, which
shows extremely close agreement between the right and left hand sides of (C 15). These

calculations are for a fixed raft amplitude A/L = 1 (which is achieved by setting ζ̂/L =

−1/2, θ̂ = 1), whilst varying the frequency. All force values are normalised by the scaling
ρgL2 for convenience.
We also compare the numerically calculated thrust values with the scaling (1.1),

incorporating the difference in amplitude between aft and fore waves. This provides the
force scaling

FT ∼ 3ρω2[A2]x=−ℓ
x=ℓ

4k
, (C 16)

where we use a prefactor of 3/4 to be consistent with other authors (Ho et al. 2021). Since
this scaling is attributed to Longuet-Higgins, we compare it to the numerically calculated
values in Figure 4 of the main text, labelled as the L-H scaling. The L-H scaling captures
the thrust qualitatively but not quantitatively, further indicating the need for the model
derived in this study.
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Gaffney, EA, Gadêlha, H, Smith, DJ, Blake, JR & Kirkman-Brown, JC 2011

Mammalian sperm motility: observation and theory. Annu. Rev. Fluid Mech. 43, 501–
528.

Ho, I, Pucci, G, Oza, AU & Harris, DM 2021 Capillary surfers: wave-driven particles at a
fluid interface. arXiv preprint arXiv:2102.11694 .

Hu, DL, Chan, B & Bush, J WM 2003 The hydrodynamics of water strider locomotion.
Nature 424 (6949), 663–666.

Longuet-Higgins, MS 1977 The mean forces exerted by waves on floating or submerged bodies
with applications to sand bars and wave power machines. Proc. R. Soc. A. 352 (1671),
463–480.

Longuet-Higgins, MS & Stewart, RW 1964 Radiation stresses in water waves; a physical
discussion, with applications. In Deep Sea Research and Oceanographic Abstracts, , vol. 11,
pp. 529–562. Elsevier.

Martischang, JP, Roux, A & Baudoin, M 2023 Acoustic dipole surfing on its own acoustic
field: toward acoustic quantum analogues. arXiv preprint arXiv:2307.06642 .

Rhee, E, Hunt, R, Thomson, SJ & Harris, DM 2022 SurferBot: a wave-propelled aquatic
vibrobot. Bioinspir. Biomim. 17 (5), 055001.

Roh, C & Gharib, M 2019 Honeybees use their wings for water surface locomotion. PNAS
116 (49), 24446–24451.

Roux, A, Martischang, JP & Baudoin, M 2022 Self-radiation force on a moving monopolar
source. J. Fluid Mech. 952, A22.

Sabrina, S., Tasinkevych, M., Ahmed, S., Brooks, A. M., Olvera de la Cruz, M.,
Mallouk, T. E. & Bishop, K. J. M. 2018 Shape-directed microspinners powered by
ultrasound. ACS Nano 12 (3), 2939–2947.

Schlichting, H & Gersten, K 2016 Boundary-layer theory . Springer.
Smits, AJ 2019 Undulatory and oscillatory swimming. J. Fluid Mech. 874, P1.
Tarr, SW, Brunner, JS, Soto, D & Goldman, DI 2023 Fluid surface self-propulsion via

confined hocking radiation fields. arXiv preprint arXiv:2305.04390 .
Yuan, ZM, Chen, M, Jia, L, Ji, C & Incecik, A 2021 Wave-riding and wave-passing by

ducklings in formation swimming. J. Fluid Mech. 928, R2.


	Introduction
	Theoretical model for an oscillating raft
	Equations of motion for the raft
	Quasi-potential flow
	Summary

	Model results, validation and application to SurferBot
	Numerical results and momentum balance
	Comparison with SurferBot

	Efficiency and optimization
	Discussion and perspectives
	Appendix A
	Appendix B
	Appendix C

