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A B S T R A C T

During the casting process of silicon the mould must be buffered from the high temperatures of the molten
silicon to prevent the mould melting and this is typically done by the operators laying down a layer of
crushed silicon particles (fines) prior to pouring of the molten silicon. It is useful for operators to know how
deep they should make the layer the fines so as to adequately separate the molten silicon from the mould. In
this paper, we consider a model for the penetration of molten silicon into the pre-laid layer of silicon fines,
which provides a predictive tool for estimating the necessary depth of fines in order to prevent the molten
silicon touching the mould. The mathematical model developed here considers the flow of molten silicon
as a Darcy flow and solidification due to heat flow as a one-phase Stefan problem. We are able to find a
numerical solutions to this model, and from this we are able to extract data regarding the penetration depth
of the molten silicon into the fines before solidification occurs. Our model and numerical solution can been
seen as a first step toward understanding this important part of the casting process for silicon.

© 2016 Published by Elsevier Ltd.

1. Introduction

It is known from the literature on solidification of pure silicon and
silicon alloys that the cooling rate and mould structure will influ-
ence the microstructure of the obtained solid; see [1,2]. To prevent
the mould melting during the casting of silicon, operators typically
lay down a layer of crushed silicon fines prior to pouring of the
molten silicon so as to buffer the mould from the high temperatures
of the molten silicon. It is useful for operators to know how deep
they should lay the fines so as to adequately separate the molten
silicon from the mould. Therefore, in the present paper we con-
struct a mathematical model to predict the depth of penetration of
molten silicon into the fines layer which is laid down on the mould
surface before pouring of the hot liquid melt. This could provide a
useful tool for operators to know how deep they should lay their
fines so as to separate the molten silicon from the mould, particu-
larly since it is known that interactions with the fines can modify
the microstructure obtained from that which might be expected
from simply considering the rate of cooling [3]. There is also inter-
est in expanding the understanding of silicon fines behaviour such as
applications in the solar energy sector [4,5].

The basic approach taken here is to assume that the fines act
as a solid porous material and that the molten silicon then travels
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through the pore structure until it cools and solidifies. The aim is
to determine the movement of the molten silicon and in particular
the distance that the molten silicon travels into the porous struc-
ture. In practical situations the molten silicon is only just above its
melting temperature so melting of the porous structure can be
neglected but the initially cold porous structure causes the molten
silicon to solidify as it flows and thereby slow the flow down.
Furthermore it is anticipated that the flow into the pores can be
assumed to have a sharp interface between those pores that are filled
with silicon and those that have yet to be filled. This will enable a
saturated model of the flow to be used. Similar problems have
been studied in relation to the percolation of water through snow
[6-9]. The main difference is that in those situations the fluid
flow typically includes non-saturated effects and, more importantly,
the snow is only just below freezing and is insufficiently cold to
completely freeze the water and close the pores. In contrast, here
the fines are initially cold enough to allow the latent heat from
the molten silicon to be completely removed and hence solidify the
entire system.

The remainder of the paper is as follows. In Section 2, we shall
outline the formulation and geometry of the fines problem. Then, in
Section 3, we cast the relevant physical problem in terms of a Ste-
fan problem. In Section 4, we give a type of similarity solution for
the Stefan problem. From this solution, we are able to extract the
salient features of the problem, in order to determine the penetration
depth of molten silicon into the fines before solidification occurs. We
discuss the results in Section 5, and mention possible directions for
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future work including the extension to more complicated scenarios
that may arise in practical applications.

2. Formulation

To allow analytical progress and simple insight to be gained
the porous material made by the fines will be assumed to be approx-
imated by a series of isolated cuts in a solid silicon material and
furthermore that problem will be taken to be two dimensional so the
holes can be considered as channels. These channels will be taken
to be long and thin, corresponding to a layer of fines that is many
particles thick.

Consider the idealised geometry and the notation set out in Fig. 1.
The molten silicon enters a narrow channel with the walls repre-
senting the fines made of solid silicon. Because the liquid is typically
only just above the melting point assume that the liquid is at the
solidification temperature, Tm, and that the solid is initially at air
temperature, Ta. The molten silicon will flow into the channel due to
the pressure created by overlying pool of static molten silicon which
we shall assume gives a known pressure p0 at the inlet of the channel.
There is a free surface between the liquid fluid and the underlying
air that moves down the channel. The details of the free surface will
be complicated by the wetting of the solid silicon by the liquid sili-
con but here we shall simply assume that this surface is horizontal
and at atmospheric pa (we assume the air can easily escape from the
region).

Take z as the vertical coordinate (pointing down the channel) and
x as the horizontal coordinate. The channel entrance is at z = 0 and
there is a the free surface between the molten silicon and the air in
the channel which is assumed to be a horizontal surface given by z =
Z(t). By symmetry we only need to consider one half of the channel so
take x = 0 to be the solid wall and x = a to be the channel centreline.
Furthermore, we neglect the finite horizontal size of the particles and
assume that the solid extends to minus infinity in x. The liquid will
solidify, resulting in an interface between solid and liquid which we
denote by x = s(t, z).

To study the problem assume first that the movement of the
liquid down the channel is known so that Z(t) is given (and more
importantly that the inverse Z−1(z) is known) and so only heat flow
need be examined. We will subsequently derive a model for Z(t)
by considering the fluid flow. Hence we start by examining the
heat dynamics of the silicon and particularly the movement of the
interface x = s(t, z).

3. The heat flow problem

For simplicity it has been assumed that the molten silicon is very
close to the melting temperature, Tm and the silicon is very pure. In
such a case it is not necessary to consider any complicated phase
diagram behaviour so there will be a sharp interface as the material
solidifies and only the latent heat of solidification and the diffusion
of heat in the solid need to be accounted for. We use Fourier’s law
for the heat flux and conservation of energy to justify the use of the
heat diffusion equation (see [10] for details). This is a free boundary
problem (in particular it is a one-phase Stefan problem) where the
phase boundary, which separates the solid silicon from the molten
silicon, must be found as part of the problem. At the phase bound-
ary the temperature of the silicon will be at the melting temperature
and the interface moves according to the Stefan condition which can
be derived from an argument of conservation of energy (see [11]
for details). The problem is symmetric about the line x = a, so we
expect a phase boundary to emerge from each wall of the narrow
channel. Hence we need only consider one half of the channel, and
therefore only one phase boundary. Without loss of generality, we

Table 1
List of dimensional parameter values provided by Elkem.

Constant Typical value Units

Tpot 323 K
Tm 1683 K
T0 1700 K
Ta 293 K
d 0.03–0.1 m
q 2533 kg/m3

L 1798060 J/kg
ks 43 W/mK
kl 23.5 W/mK
cs 970 J/kg K
cl 970 J/kg K
h 0.02 m
a 0.002 m
pa 101325 kg/ms2

g 9.8 m/s2

l 0.02 kg/ms

shall consider the region x ∈ (−∞, a] and let the position of the phase
boundary be denoted x = s(t, z).

The heat flow in the solid is governed by the two-dimensional
heat equation

qcp
∂T
∂t

= k∇2T, (1)

where q, cp, and k are the density, specific heat capacity and ther-
mal conductivity of the material respectively, which are all taken
to be constant. In the narrow channel, however, the diffusion dis-
tance is much shorter than the channel length so that the heat flow
in the solid is approximately governed by the one-dimensional heat
equation

qcpTt = kTxx. (2)

One consequence of this one-dimensional heat flow approximation
is that at any particular position down the channel, z, for times before
the interface arrives, t < Z−1(z), the temperature will remain at its
initial state and there is no solidification so that s(t, z) = 0. Therefore
the heat flow at any position z only needs to considered t ≥ Z−1(z).

At the phase boundary the temperature must equal the melting
temperature, so

T(s(t, z), z, t) = Tm. (3)

We have taken the density to be the same in both the liquid and the
solid as the density of silicon only varies by about 2% at this tran-
sition. A list of the values of the various constants can be found in
Table 1.

To change phase, the latent heat, L, of the silicon must be
removed. The ‘Stefan condition’ (see [11]) dictates that the latent
heat required to move the interface must be removed by the differ-
ence between the heat fluxes at either side of the solidification front.
Considering that the temperature is constant (at melting tempera-
ture) in the liquid region, then we get

qL
∂s
∂t

= k
∂T
∂x

, (4)

at x = s(z, t).
To solve this problem consider the following scalings for each

variable:

t =
qLa2

kl (Tm − Ta)
t̂, x = ax̂, T = Tm + (Tm − Ta) T̂. (5)
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Fig. 1. Schematic of the model. Molten silicon penetrates a thin channel between two solid silicon particles. The liquid moves down the channel with its lower interface at
z = Z(t). Meanwhile the solidification front x = s(t, z) moves into the channel as heat flows into the surrounding particles.

so that in non-dimensional form, the problem in the liquid region
becomes

T̂ = 0, (6)

while in the solid and solidified regions, it becomes

St
∂ T̂

∂ t̂
=

∂2T̂
∂ x̂2

, (7)

T̂ = −1 as x̂ → −∞, (8)

T̂ = 0 on x̂ = ŝ(t̂, ẑ). (9)

Here, St = cs(Tm−Ta)
L is the “Stefan number”, which measures the ratio

of sensible heat to latent heat. The conditions at the interface x̂ =
ŝ(t̂, ẑ), commonly referred to as the “Stefan condition”, become

T = 0,
∂ ŝ

∂ t̂
=

∂ T̂
∂ x̂

. (10)

Finally, since the fines are presumed to be at air temperature initially
we have the condition

T̂ = −1 at t̂ = Ẑ−1(ẑ). (11)

Note the problem above governs the movement of the boundary
x̂ = ŝ(t̂, ẑ) from time when the fluid interface arrives at position z,
i.e. t ≥ Z−1(z) up until the channel solidifies all the way across and
this will first occur at top of the channel ẑ = 0 at some time t∗ when
ŝ(t∗, 0) = 1. After this time no more liquid can enter the channel and
no fluid flow occurs. There is then a heat problem to solve but this is
not of immediate interest so we do not consider this here.

4. Solution for the Stefan problem

The heat flow problem is a classical one-phase Stefan problem
on a semi-infinite region. This can be solved analytically, as shown
in [10] by noting that there is a similarity solution. The solution is

self-similar if we scale all lengths by the square root of the time.
Noting that the problem starts at t = Z−1(z) this implies we take

g =
x̂√

t̂ − Ẑ−1(ẑ)
, k =

ŝ√
t̂ − Ẑ−1(ẑ)

, (12)

where g is the new independent variable and the position of the
solidification front is given by g = k where k is a constant to be
found. We now assume the solution is of the form T = f(g) and get
the boundary value problem

f ′′ (g) +
St
2
g f ′ (g) = 0, f (−∞) = −1, and f (k) = 0. (13)

The constant k is determined by the Stefan condition

f ′ (k) =
k

2
. (14)

We can obtain the exact solution to Eq.(13), and using this we recover
the thermal profile

T̂(x̂, t̂) =
1 + erf

(
x̂
2

√
St

t̂−Ẑ−1(ẑ)

)
1 + erf

(
k
2

√
St

) − 1. (15)

From this expression, we find that k is determined by the transcen-
dental equation

√
St
p

e− Stk2
4 =

k

2

(
1 + erf

(
k

2

√
St

))
. (16)

We give a plot of the relation between the parameter k and the Stefan
number in Fig. 2. For the solidification of silicon, we find that St =
0.74 resulting in a value of k = 0.68. Note that Eq.(16) is a non-
dimensional relationship which gives k as a non-monotonic function
of St. Worster [12] gives a similar relationship which is monotonic,
due to the fact that it is in dimensional form. Having determined the
behaviour of the thermal problem by assuming the function Z−1(z)
was known and shown that

for t̂ ≤ Ẑ−1(ẑ) we have ŝ(t̂, ẑ) = 0, (17)
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Fig. 2. Plot of the relation between the parameter k and the Stefan number,
St, obtained from Eq. (16). For both of the limits St → 0 and St → ∞, the value of
k approaches zero. For the solidification of silicon, we have St = 0.74 resulting in a
value of k = 0.68.

and for t̂ ≥ Ẑ−1(ẑ) we have ŝ(t̂, ẑ) = k

√
t̂ − Ẑ−1(ẑ), (18)

we now return to the problem of determining the fluid flow.
We note that the liquid will move down the channel driven by

the pressure difference between the pool of molten silicon above and
the air below. We assume the fluid flow is slow with constant vis-
cosity and in a long thin channel with velocity in the horizontal and
vertical directions, u and w, respectively. We start by considering
conservation of mass and note that the vertical velocity has very lit-
tle x dependence, so we shall assume that w = w(t, z). Conservation
of mass gives us

ux + wz = 0, (19)

which we integrate over the width of the fluid channel to give us

[u]a
s(t,z) + (a − s(t, z))wz = 0. (20)

By symmetry, we must have ux=a = 0 and in addition we require
a kinematic condition on the solidification front which takes the form

D
Dt

(s(t, z) − x) =
∂s
∂t

on x = s(t, z). (21)

and is equivalent to

u|x=s(t,z) = wsz. (22)

Thus, Eqs.(20) and (22) combine to give the approximate conserva-
tion of mass equation

((a − s(t, z))w(t, z))z = 0. (23)

Note that a simple integration gives

w(t, z) =
Q(t)

a − s(t, z)
, (24)

where Q(t) is the flux down the channel.

We next consider the momentum balance and assume that the
slow viscous flow in the channel is governed by Darcy’s law

w(t, z) =
−(a − s(t, z))2

12l
pz, (25)

where p is the pressure and l is the viscosity. Note in writing this
equation down the effects of gravity have been neglected and this
is because the pool of molten silicon is generally much deeper that
thickness of the layer of fines and hence dominates the gravitational
effects.

We now want to solve Eq. (25) and (24). We assume that the pool
of liquid silicon above has depth H and is static so the hydrostatic
pressure is gives p(0, t) = p0 = pa +qgH. On the moving interface we
assume that are no capillary forces so that p(Z(t), t) = pa and finally
that there is a kinematic condition at the moving interface that the
velocity of the fluid is the velocity of the interface. This gives

p(t, 0) = p0, p(t, Z(t)) = pa, and
dZ
dt

= w(t, Z(t)). (26)

A non-dimensionalised version of the problem can readily be
found using the scaling of Eq.(5), and we have the scalings

p = pa + (p0 − pa) p̂ = pa + qgHp̂, Z = HẐ. (27)

We now substitute w from Eq.(24) into Eq.(25), impose the condition
(26) and exploit the functional form of s found in Eq.(12) to give the
single equation for Z(t)

dẐ

dt̂
= b

⎛
⎜⎜⎜⎝

∫ Ẑ(t̂)

0

1(
1 − k

√
t̂ − Ẑ−1(ẑ)

)2
dẑ

⎞
⎟⎟⎟⎠

−1

, (28)
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Fig. 3. Numerical solution to the non-dimensional ordinary differential equations
given by Eq. (30) with initial condition Ẑ (0) = 0, b = 21 and St = 0.74. Note that
the solution breaks down at t̂∗ = 0.52 because the integral became singular, since
the gap at z = 0 has closed. This is indicated by how Ẑ′

(
t̂∗

)
= 0. We have also

plotted an approximate analytical solution which matches the numerical solution,

Z(t) = A sin
(

p
2

√
t

t∗

)
, where A ≈ 1.6 is the non-dimensional penetration depth. This

results in a dimensional penetration depth of 3.2 cm.
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Fig. 4. We can see that the ultimate penetration depth appears to increase as we
increase the parameter b = qLa4(p0−pa)

12lH2kl(Tm−Ta)
. We find that typical values of b vary

between 10 and 100. The linear relationship A = 1 + 0.025b appears to fit the data
fairly well.

with Ẑ(0) = 0. In deriving this equation we have introduced the non-
dimensional constant

b =
qLa4(p0 − pa)

12lH2kl(Tm − Ta)
(29)

which is the single physical parameter (along with St) that governs
the movement of the fluid into the fines. It is the ratio of the time
taken to solidify a region of thickness a to the time taken to flow
down a channel of length H.

First note that (28) can be rewritten as

dẐ

dt̂
= b

⎛
⎜⎝∫ t̂

0

Ẑ′ (u)(
1 − k

√
t̂ − u

)3
du

⎞
⎟⎠

−1

, (30)

which can be solved numerically. The solution breaks down after a
certain time t = t∗, as by this time the gap at z = 0 has closed. We
plot the numerical solution for b = 21 and St = 0.74 in Fig. 3. We
find that typical values of b range between 10 and 100. In Fig. 4, we
plot the total penetration depth for various values of b.

Note that at early times, we can expand Eq. (30) and show that
the behaviour of Z′(t) is like t−1/2 as t → 0. This is also reflected
in the numerical solution (see Fig. 3) where we see an initially
large gradient. From this initial scaling, along with the fact that the
solution must eventually reach a maximal value. There is no closed
form analytical solution to the equation but by guessing a suitably
simple form and fitting it to the numerical solution we find

Z(t) = A sin

(
p

2

√
t
t∗

)
(31)

where A ≈ 1.6 accurately reproduces the solution for
St = 0.74,b = 21, which is seen in Fig. 3. This corresponds to a
dimensional penetration depth of 3.2cm. The relationship between
b and A can be seen in Fig. 4. It appears to be linear relationship of
the form A ≈ 1 + 0.025b.

5. Conclusions

We have developed a simple initial model for the penetration of
molten silicon into a pre-laid layer of fines which acts as a buffer
between the melt and the mould. We were able to find a numeri-
cal solution to this initial model which, upon calibration and further
analysis, could potentially provide a predictive tool for estimating
the necessary depth of fines in order to separate the molten silicon
from the mould. Therefore, our model and numerical solution can
been seen as a first step toward understanding this process.

In the future, more complicated three-dimensional simulations
could be generated, in addition to experimental work. This would
allow predictions that accounted in more detail for the geometry of
the fines, the capillary forces and any impurities in the silicon but
at the expense of significantly greater computational effort. It would
also be possible to use these initial ideas to motivate understanding
on how the initial grain structured of the fines influences the grain
structure of the completed cast. These are therefore interesting and
potentially useful areas of further work.
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