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We consider the release and subsequent gravity-
driven spreading of a dense finite volume of fluid
in an anisotropic porous medium bounded by an
impermeable substrate. When the permeability in
the vertical direction is much smaller than in the
horizontal direction, as is the case in many real
geological reservoirs, this restricts the spread of the
current to a very thin layer near the impermeable base.
Using a combination of asymptotic analysis and finite
difference computations of Darcy flow, we show that
there exist two distinct flow regimes. At early times,
the bulk of the current descends slowly and uniformly,
injecting fluid into thin finger-like regions near the
base. At much later times, the current transitions to
the classical gravity-driven solution and continues
to spread with a self-similar shape. One interesting
consequence is that the swept volume of the current
grows differently depending on the anisotropy of
the medium. This has important consequences for
managing contaminant spills, where it is important
to minimize the contacted volume of the aquifer, or
during geological CO2 sequestration where a larger
contacted volume results in more CO2 being stored.

1. Introduction
Gravity-driven flows resulting from the release of a
fluid within a porous medium are a common feature of
environmental fluid dynamics. For example, such flows
arise when groundwater responds to heavy rainfall [1],
after the spillage of a contaminant [2], or during the
geological storage of carbon dioxide in saline aquifers
[3]. Since all geological aquifers are heterogeneous and
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often this heterogeneity manifests as an anisotropic permeability field [4], it is important to
quantify how this affects the migration speeds and shape of the current. This is particularly
relevant to situations where it is desirable to minimize the volume of the aquifer contacted by
the fluid (e.g. containing the spread of a contaminant) or to maximize the contacted volume (e.g.
trapping residual saturation during CO2 storage).

In the case of homogeneous and isotropic porous media, there have been numerous studies
on the evolution of fixed volume gravity currents. Some of these studies have treated single-
phase flows [5], while others have incorporated multi-phase effects such as residual trapping [6,7]
and dissolution within the ambient fluid [8]. In some cases, simple scaling laws were derived by
exploiting the self-similar properties of gravity currents, as shown by [9] in the case of single-
phase flow, and by [10] in the case of trapped residual saturation. Later work by [11–13] explored
the transition to self-similarity in both confined and unconfined settings. However, less attention
has been paid to the case of heterogeneous or anisotropic porous media, despite the relevance to
real geological reservoirs.

Nevertheless, some progress has been made for specific types of buoyancy-driven flows in
heterogeneous media. For example, several studies have investigated how anisotropy affects
convective dissolution within an ambient fluid phase [14–16]. In the case of gravity currents
resulting from constant injection, [17] explored how heterogeneities of different lateral and
vertical scales affect the migration speed of a CO2 plume. Likewise, [18] addressed the case
of a gravity current resulting from point source injection in an anisotropic medium. In this
study, it was shown that anisotropy can cause a build-up of pressure that stretches the flow
into an ellipsoid shape during an early-time regime of the flow, before transitioning to a gravity-
dominated regime at much later times. However, no studies have addressed how heterogeneity
affects the spreading of a released volume of fluid (i.e. in the absence of injection), despite the
relevance to post-injection scenarios during CO2 storage, and to post-leakage scenarios in the
context of contaminant spills.

CO2 storage in geological reservoirs is one of the key proposed technologies to reduce
emissions and limit the effects of global warming [3]. In such scenarios, buoyant CO2 is injected
into a brine-filled reservoir beneath an impermeable cap rock. Once the injection is switched off,
the CO2 rises and spreads out beneath the cap rock, with a fraction of its mass being lost to
residual trapping (via the drainage/imbibition cycle) and dissolution within the surrounding
brine [8,19]. Hence, to quantify the trapping potential of different geological reservoirs (e.g.
when choosing potential storage sites), it is important to understand how the anisotropy of the
aquifer may affect the historical migration of the current across the pore space. In the context of
a contaminant spillage, the objective is to contain and minimize the spread of a harmful fluid
within an aquifer. Therefore, in a similar manner to the CO2 storage problem, it is necessary to
quantify how and where the contaminant fluid will spread in response to the heterogeneity of the
aquifer, once the leak has been closed off [20].

In this study, we demonstrate that anisotropy restricts the flow of the gravity current to
thin finger-like regions spreading near the impermeable boundary, qualitatively similar to those
predicted by other studies [17]. Due to this flow distortion, the swept volume of the current is
reduced for anisotropic aquifers. This indicates that isotropic aquifers may have better potential
for certain forms of CO2 trapping that depend on the contacted volume of pore space. By contrast,
in the case of a contaminant spill, anisotropic aquifers may help contain the spread of the fluid by
restricting the flow to a reduced fraction of the porous medium.

2. Finite release in two-dimensional anisotropic media

(a) Release and subsequent dynamics
We consider an anisotropic porous medium in which the horizontal permeability kH is much
larger than the vertical permeability kV . Such anisotropic flow properties are a common feature
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Figure 1. Schematic diagram. (a) A finite volume 2LHφ of dense fluid is released into a porous medium with an anisotropic
permeability field kH � kV above an impermeable base. (b) The medium is initially saturated with a less dense fluid so that
the bulk region (I) descends slowly at speed−εub, where ε = kV/kH and ub is the buoyancy velocity (2.10), while a thin finger
region (II) develops near the base of the current. Note that the aspect ratioα = H/L could be either small or large depending
on the application (see later discussion in §6).

in geological reservoirs and may result from the deposition of successive layers of fine and
coarse material or from post-depositional compaction of the formation [21]. As we will show,
the anisotropy of the medium restricts the vertical flow of the bulk of the fluid, which we denote
region I (figure 1), resulting in a slow migration towards the impermeable boundary. Meanwhile,
gravity-driven spreading is limited to thin finger-like regions near the base, which we denote
region II.

To start with we restrict our attention to two-dimensional flows (although radially symmetric
flows will be addressed later in §5) and we consider the release of a volume (per unit width)
of fluid with constant density ρ. The surrounding porous medium is initially saturated with an
ambient fluid with relatively smaller density ρa < ρ. Due to the Boussinesq approximation [22],
these results also apply in the case of a lighter fluid (e.g. CO2) released within a porous medium
saturated with a heavier fluid (e.g. brine), with the impermeable boundary located above rather
than below.

We take the viscosity of the released fluid1 to be μ, and we consider that the initial shape is
rectangular, with dimensions 2L × H. It should be noted, however, that these results would apply
to any similar convex shape, as shown in figure 8 and discussed in more detail in appendix A.

The flow in the released volume of fluid is subject to the two-dimensional Darcy equations,

u = − 1
μ

k · ∇[p + ρgz] (2.1)

and

∇ · u = 0, (2.2)

where u is the Darcy velocity vector, p is the pressure and k = diag(kH, kV) is the anisotropic
permeability field in the x, z directions. Combining (2.1) and (2.2), the pressure satisfies Laplace’s
equation with anisotropic coefficients,

∂2p
∂x2 + ε

∂2p
∂z2 = 0, (2.3)

where the anisotropy is given by

ε = kV

kH
� 1. (2.4)

The boundary conditions for the flow in region I are as follows. The left hand and bottom
boundaries, x = 0, z = 0, are assumed to be symmetric and impermeable, respectively, so we

1The viscosity of the ambient fluid is not relevant here since the domain is infinitely deep, as discussed in [23].
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prescribe no normal flow,

u = 0 : x = 0 (2.5)

and

w = 0 : z = 0. (2.6)

Likewise, at the fluid interface, which we denote z = h(x, t), we impose the dynamic and kinematic
boundary conditions

p = pa − ρagh : z = h(x, t) (2.7)

and

w = φ
∂h
∂t

+ u
∂h
∂x

: z = h(x, t). (2.8)

The former condition matches the pressure in the fluid with the ambient hydrostatic pressure
(note that the reference pressure pa is the ambient value at z = 0), while the latter condition
imposes that a particle at the interface remains at the interface [24,25].

In the limit ε → 0, mass conservation (2.2) indicates that if there is no vertical flow (i.e. kV = 0)
then there cannot be any horizontal flow either. Essentially, the governing equation (2.3) implies
that the pressure (which is continuous) is set by the ambient fluid, such that p = pa − ρagz, and
the resulting velocities are u = w = 0. Hence, the interface remains at the initial position z = h0(x)
for all time.

Now let us consider the case of a strongly anisotropic porous medium, such that 0 < ε � 1. In
this case, the solution can be found by performing an asymptotic expansion of the pressure in
powers of ε. Within this expansion, the leading order contribution to the pressure is simply the
solution to the isotropic problem (i.e. with ε = 0 exactly). Hence, for the same reasons as described
above, the leading order pressure is hydrostatic and set by the ambient fluid, p = pa − ρagz.
However, by inserting this pressure into Darcy’s Law (2.1), we now derive a small but finite (i.e.
first order) vertical velocity within region I, such that

w = −εub, (2.9)

where

ub = kH�ρg
μ

, (2.10)

is the buoyancy velocity and �ρ = ρ − ρa. Since (2.9) does not satisfy the impermeability condition
(2.6), it is necessary to re-evaluate the solution near z ≈ 0 using boundary layer theory.

Mathematically speaking, (2.3) is a singular perturbation problem since it is a second-order
partial differential equation (PDE) with a small parameter in front of a second derivative. This
indicates that not all vertical boundary conditions can be satisfied by the leading order solution.
Specifically, the dynamic boundary condition (2.7) is imposed at z = h to ensure continuity of
pressure, while the impermeability condition (2.6) at z = 0 is left unsatisfied. To correct this
requires rescaling the solution to investigate changes over a small vertical distance near z ≈ 0, also
known as a boundary layer. By inspection of (2.3), it is clear that z must be rescaled by a factor
of ε1/2 to recover all terms in the governing equation. Hence, an appropriate choice of rescaled
dimensionless variables is

x = Lξ , z = ε1/2Lζ , p = pa − ρagz + ε1/2�ρgL P(ξ , ζ ), (2.11)

where ξ , ζ and P are variables that are O(1) in magnitude. Note that the pressure in (2.11) must
also be rescaled by a factor ε1/2 so that the boundary condition (2.6) (i.e. ∂p/∂z + ρg = 0 at z = 0)
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balances all terms at leading order. In this way, within the boundary layer region, the governing
equations and boundary conditions (2.3), (2.5) and (2.6) become

∂2P
∂ξ2 + ∂2P

∂ζ 2 = 0, (2.12)

∂P
∂ξ

= 0 : ξ = 0 (2.13)

and
∂P
∂ζ

= −1 : ζ = 0. (2.14)

In addition, we require that the inner solution (within the boundary layer) matches with the outer
solution (far outside the boundary layer) [26], such that

P → 0 : ζ → ∞. (2.15)

The system is not yet complete since the governing equation (2.12) is a second-order elliptic PDE
that requires four boundary conditions. The fourth and final boundary condition needs more
careful thought. Since there is a vertical velocity (2.9) descending through the outer region, this
induces an arrival of flux εubL within the inner region. However, since this flux can go neither
downwards nor leftwards (due to impermeable/symmetric boundaries), it must instead exit
through the right-hand boundary, x = L. In other words, the right-hand interface must move
outwards to conserve mass, creating a new finger-like region of vertical size z ∼O(ε1/2), which
we denote region II.2 Hence, the final boundary condition for region I is given by an integral
constraint3 of the form ∫∞

0
− ∂P

∂ξ

∣∣∣∣
ξ=1

dζ = 1. (2.16)

The descent of the upper interface in region I and the resulting finger-like region II are both
illustrated in figure 1b.

Before addressing these details further, we first note that (2.12)–(2.16) can be solved exactly by
separation of variables. Hence, the composite solution (valid across both inner and outer regions)
is given by

p = pa − ρagz + 2ε1/2�ρgL
∞∑

n=0

(−1)n

λ2
n

cos
[

λnx
L

]
exp

[
− λnz

ε1/2L

]
, (2.17)

where λn = (2n + 1)π/2. Conservation of mass within region I indicates that

φ
∂h
∂t

+ kH

μ

∂

∂x

[∫ h(x,t)

0
−∂p

∂x
dz

]
= 0. (2.18)

Hence, inserting (2.17) into (2.18) results in the governing equation for the evolution of the
thickness of the current, which is

φ
∂h
∂t

− ubεL
∂

∂x

∞∑
n=0

2(−1)n+1 sin λnx/L

λ2
n

(
1 − exp

[
−λnh(x, t)

ε1/2L

])
= 0. (2.19)

This can be further simplified by ignoring exponentially small terms when h/L is larger than
O(ε1/2), and by using the fact that the infinite sum converges to −x/L. Hence, we see that the
thickness within region I is given by

h = H − εubt
φ

, (2.20)

which is valid for 0 < x < L and for h �O(ε1/2). Hence, we see that within this asymptotic
framework the shape in region I is independent of x at leading order, h ≈ h(t). However, the

2By prescribing the growth of a finger-like region II, we have neglected other possible distortions to the right-hand boundary
of region I. However, our choice is motivated by comparison with numerical simulations (e.g. figure 2), which clearly show a
finger-like region of this form.
3The upper limit of the integral in (2.16) is set to ∞ following the method of matched asymptotics [26]. This ensures that mass
is exactly conserved as we leave the inner boundary layer solution.
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Figure 2. (a–c) Approximate solution for regions I and II compared with numerical solution in the case of ε = 10−2. Times
are given in terms of the transition time (2.37), where (a) t/t∗ = 0.07, (b) 0.17 and (c) 0.34. Streamlines are evaluated using
velocities derived from (2.17) and (2.21). (d) Further numerical solutions are shown at times t/t∗ = 0.42, 0.69, 1, 1.82, 3.22.
Note that the aspect ratio of these plots has been stretched for illustration purposes.

dependence of h on x may be recovered by considering higher-order asymptotics (e.g. retaining
all terms in (2.19)), or by considering non-rectangular initial shapes (see appendix A).

Next, we address the fluid flow in region II, which is the finger-like region of escaped fluid near
the base of the current, which is defined for L < x < xn(t), where xn(t) is the maximum extent of the
finger. This flow region is long and thin (like a classical gravity current) such that the horizontal
velocity is much larger than the vertical velocity. Consequently, the pressure within region II is
hydrostatic to good approximation, such that

p = pa − ρagh − ρg(z − h). (2.21)

Similarly to (2.18), conservation of mass within this region gives

φ
∂h
∂t

= ub
∂

∂x

[
h
∂h
∂x

]
, (2.22)

which is sometimes called the Dupuit approximation. This is accompanied by boundary
conditions that correspond with imposing the input flux from region I,

− ubh
∂h
∂x

= εubL : x = L+, (2.23)

and imposing zero thickness and zero flux at the moving front,

h → 0 : x → xn(t) (2.24)

and

− ubh
∂h
∂x

→ 0 : x → xn(t). (2.25)

By introducing dimensionless coordinates,

h = ε1/2LH(ξ , τ ), x = L(1 + ξ ), t = φL
ε1/2ub

τ , (2.26)

we get the same system as [5] for a constant input flux (see appendix B for further details). The
solution is well known and is given in terms of the similarity variables

η = ξ/τ 2/3, H= τ 1/3f (η). (2.27)

The self-similar shape function f (η) is defined for η ∈ [0, ηN = 1.482], and is monotone decreasing
from f0 := f (0) = 1.296 to f (ηN) = 0. The solution for regions I and II is plotted in figure 2a–c, at
several different times. Streamlines confirm that the flux into region II is fed by the shrinking of
region I. Comparison is also made with a numerical solution described later in §3.
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Figure 3. Evolution of the vertical (a,b) and horizontal (c,d) extents of the gravity current for different anisotropy values,
showingbothnumerical andapproximate solutions. In (a,c), the results havebeen rescaledwith respect to early-timebehaviour,
(2.20), (2.28). In (b,d), the results have been rescaled with respect to late time behaviour, (2.34), (2.35). Vertical dashed lines
indicate the transition time t∗. Note that h is taken as its maximum value (which occurs at x = 0).

The maximum vertical extent of the flow is given by (2.20), whereas the maximum horizontal
extent is determined through the above scalings as

xn = L(1 + ηNτ 2/3). (2.28)

These are plotted in figure 3a,c, with dot-dashed red lines, thereby indicating the early-time
behaviour of the released fluid.

(b) Transition to self-similarity
After a long time, the flow is expected to eventually transition to the self-similar behaviour of
a finite release gravity current [5,12]. As discussed in [18], the late-time dynamics of a two-
dimensional gravity current are independent of the anisotropy of the medium since the bulk
flow decouples from the ambient.4 Hence, the anisotropy only affects the late-time behaviour by
delaying the time to transition to self-similarity. Hence, to study the late-time behaviour, we first
analyse the isotropic case, which determines the late-time dynamics, and then derive the time t∗
to transition between the early and late solutions, where t∗ depends on the anisotropy ε.

As before, the thickness of the gravity current (which now occupies a single region 0 ≤ x ≤
xn(t)) satisfies the Dupuit approximation (2.22). The boundary conditions are similar to the case

4Note that this decoupling is a consequence of ignoring the return flow of ambient fluid, which is in turn ignored because the
ambient is presumed to be infinitely deep [23].
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of constant input flux, as described above, except the left-hand boundary condition is replaced
with the zero flux condition

∂h
∂x

= 0 : x = 0. (2.29)

Consequently, mass conservation indicates that
∫ xn(t)

0
h dx = HL. (2.30)

By introducing dimensionless coordinates,

x = (HL)1/2ξ , h = (HL)1/2H(ξ , τ ), t = φ(HL)1/2

ub
τ , (2.31)

and switching to similarity variables

η = ξ/τ 1/3, H= f (η)/τ 1/3, (2.32)

we arrive at a system of equations that can be solved analytically to give

f (η) = 1
6

(η2
N − η2), (2.33)

where ηN = 32/3, as shown in [5] (see appendix B for further details).
The maximum vertical and horizontal extent of the flow are given by

h|x=0 = η2
N(HL)1/2

6τ 1/3 (2.34)

and
xn = ηN(HL)1/2τ 1/3, (2.35)

respectively. These scalings are plotted in figure 3b,d, with dot-dashed red lines, thereby indicating
the late-time behaviour of the gravity current.

Next, we discuss the time taken to transition from the early flow regime involving two fluid
regions to the late flow regime with a single region which is self-similar. In the early regime, the
vertical extent of region I descends according to (2.20). By contrast, the vertical extent of region II
(ε1/2LH in (2.26)) increases like ∼ f0(ubε

2L2t/φ)1/3. Hence, it is expected that the transition to self-
similarity will occur once these two thickness scalings approach each other. Thus, the transition
time t∗ satisfies the cubic equation(

H − εubt∗

φ

)3
= f 3

0 ubε
2L2t∗

φ
. (2.36)

The solution has a complicated form but can be expanded in powers of ε � 1 to give

t∗ = Lφ

ubε

[
α − f0α1/3ε1/3 + f 2

0
3α1/3 ε2/3 + · · ·

]
, (2.37)

where α = H/L is the aspect ratio of the initial current shape. Hence, anisotropy delays the
transition to a classical self-similar regime, which is consistent with other studies [18]. At the
transition time t∗, the maximum thickness of the current (which we denote H∗) is given by

H∗ = Lε1/3

[
f0α1/3 − f 2

0
3α1/3 ε1/3 + . . .

]
. (2.38)

This indicates that, by the time transition occurs for very anisotropic media, the bulk of the current
has shrunk significantly. This hints towards a reduced swept volume, which we analyse further
in §4.

The transition time t∗ and the transition thickness H∗ (given in dimensionless terms) are
plotted in figure 4. These importantly depend on both the anisotropy ε as well as the initial aspect
ratio of the flow α. It should be noted that in practice strong anisotropy ε � 1 may cause the flow
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Figure 4. (a,b) Transition time t∗ and the transition thickness H∗, determined by solving (2.36) for different values of the
anisotropy ε and the initial aspect ratioα. Leading order scalings for small ε (see (2.37), (2.38)) are shown with dotted lines.

to spread out laterally before contact with the impermeable cap rock [17]. Therefore, ε � 1 may
be correlated with α � 1, although this also depends on the location of the injection (see §6).

3. Finite difference computations of Darcy flow
Next, in this section, we compare our analytical predictions with finite difference computations
of two-dimensional Darcy flow. The flow is modelled with the Darcy equations (2.1)–(2.2),
accounting for different permeability values, kH and kV , in the horizontal and vertical directions.
The governing equations are accompanied by boundary conditions (2.5)–(2.6), corresponding
with impermeable/symmetric walls at x = 0 and z = 0. The dynamic boundary condition (2.7) is
imposed on the interface z = h(x, t), which is interpolated over a gridded mesh of 150 × 150 points.
Likewise, a spatial domain of finite size 4L × H is chosen in the x × z directions. The fluid flow
is not resolved beyond the interface z > h(x, t) since pressure is assumed to be hydrostatic in the
ambient fluid.5 Mass conservation dictates that the interface evolves according to

φ
∂h
∂t

+ kH

μ

∂

∂x

[∫ h(x,t)

0
−∂p

∂x
dz

]
= 0, (3.1)

with suitable initial conditions h(x, 0) = h0(x). Boundary conditions for h are given by (2.24), (2.25)
and (2.29) (see earlier discussion for further explanation). The time-dependent equation for the
fluid–fluid interface (3.1) is solved using an explicit forward Euler scheme in time, and a backward
scheme in space. At each time step the Darcy equations, (2.1)–(2.2), are solved using a second-
order central finite difference scheme. The code used for these computations is available in the
electronic supplementary material.

Results from the finite difference computations are compared with the analytical model in
figures 2 and 3. Figure 2a–c shows the distorted spreading of the gravity current via a thin finger
near the base. Good agreement is observed everywhere except near x ≈ L where the two regions
connect. Here, the interface transitions smoothly between regions I and II, which is a second-
order feature that is missing from the simple analytical model. The numerical solution enables
computation of the gravity current shape up to and beyond the transition time t∗, as is displayed
in figure 2d. This demonstrates clearly how the flow transitions from a two-region (bulk/finger)
structure at early times to a slumping single-region structure at late times.

Figure 3 displays numerical computations of the vertical and horizontal extents of the gravity
current across early and late time regimes. Different values of ε are evaluated, and the results
are rescaled to collapse the data at early and late times separately. The data show good agreement
with the analytical predictions, with error getting smaller as we decrease ε, as expected. Likewise,

5In reality, the ambient fluid is not perfectly quiescent, since it gets displaced by the gravity current, but such displacement
flow does not affect the gravity current to good approximation since the ambient fluid is of infinite depth [23].
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we also observe good agreement with the transition times (shown with vertical dashed lines),
indicating the accuracy of our prediction for t∗ (2.37).

As a benchmark test, we also compare these finite difference computations with a gravity
current slumping in an isotropic medium, ε = 1. Since our analytical model only applies for ε � 1,
the initial dynamics involving regions I and II are irrelevant for this case. Instead, we set the initial
shape as

h0(x) = H
[

1 −
( x

L

)2
]

, (3.2)

which is simply the similarity solution (2.33). Since the initial shape satisfies the similarity
conditions, this ensures that the solution remains self-similar for all time. In figure 8a–c, we plot
the self-similar evolution of the gravity current shape at various times. Excellent agreement is
attained between the numerical model and the exact self-similar solution, indicating the reliability
of the finite difference approach. In figure 8d–f, we display similar computations for the same
initial shape released in an anisotropic medium, ε = 10−2. In this case, the flow is decomposed
into regions I and II, as before, demonstrating how our simple model can be extended to account
for other released shapes. Further details and discussion of this case are given in appendix A.

4. Swept shape and swept volume
As described earlier, it is useful for applications (e.g. contaminant transport or CO2 storage) to
quantify the total volume contacted by the gravity current, also known as the swept volume.6

At early times t � t∗, region I shrinks uniformly downwards while region II grows upwards and
outwards. Hence, the swept volume V is simply equal to the initial volume plus the instantaneous
volume of region II, such that

V(t) = 2HL + 2εubLt. (4.1)

At much later times t � t∗, once the gravity current has transitioned to self-similarity, the
thickness z = h(x, t) has some parts which are growing and other parts which are shrinking, so
this requires more careful attention. To deal with this, we first define the swept shape S as the
maximum thickness that the current ever reached at a given value of x, such that

S(x) = max
t

{h(x, t)}. (4.2)

The swept volume is then given in terms of S as

V(t) = 2
∫ xn(t)

0
S dx. (4.3)

The swept shape (4.2) is calculated by finding the time at which the thickness is maximal, which
is equivalent to η = 31/6 in the similarity solution f (2.33). Inserting this into (4.2), we get

S(x) = HL
31/2x

, (4.4)

which is only valid for x � L. Hence, the swept volume (up to a constant C) is

V(t) = 2HL
31/2 log xn(t) + C, (4.5)

which clearly diverges like ∼ log t as t → ∞. The constant of integration is found by equating (4.1)
and (4.5) at the transition time t∗. Hence, the late time behaviour of the swept volume is given by

V(t) = 2HL + 2εubLt∗ + 2HL
31/2 log

(
t
t∗

)1/3
. (4.6)

In figure 5a,b,d, the swept shape S(x) and swept volume V(t) are plotted for different values of the
anisotropy ε. For ε � 1, the anisotropy restricts the swept shape (for x > L) to finger-like regions

6Note that since our model is in two dimensions, the swept volume is taken as per unit width. Also note that the total volume
of fluid is constant and given by 2HLφ = φV(0).
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Figure 5. (a,b) Swept shape of the gravity currentS(x) (4.2) in the case of ε = 10−3 and 10−2. (c) Self-similar isotropic case
ε = 1 (note the modified initial conditions). (d) Evolution of the swept volumeV (t) for each of these cases (note that time is
stretched by a factor ε). Transition times t∗ are indicated with coloured dots. The initial aspect ratio is set asα = 1 in all cases.

near the base of the current. The maximum thickness of the fingers is set by H∗ (2.38), which scales
like H∗ ∼ ε1/3 (i.e. the more anisotropic the medium, the narrower the fingers). Furthermore,
anisotropy delays the transition time (2.37), since t∗ ∝ ε−1. Meanwhile, before transition occurs,
t � t∗, anisotropy causes the swept volume to grow slowly (since V ∝ εt in (4.1)), such that the
gravity current contacts a smaller fraction of pore space at early times. Note that the kinks at the
corners x = ±L (in S) and at the transition time t = t∗ (in V) would be smoothed out by higher-
order asymptotics or numerical computations of two-dimensional Darcy flow. However, such
features do not affect the overall leading order behaviour displayed here.

For comparison, we also plot the swept shape S in the isotropic case, ε = 1, in figure 5c. As
described at the end of §3, the isotropic case uses (3.2) as the initial shape and remains self-similar
for all times. It should be noted that the modified initial shape results in a different initial swept
volume for this case, V(0) = 4HL/3. Clearly, the classical (isotropic) self-similar solution has a
larger swept shape and a faster growing swept volume than the anisotropic cases.

5. Finite release with radial symmetry
The above results can be easily extended to account for radially symmetric flows if the anisotropy
remains aligned with the vertical coordinate, i.e. with permeability kH, kV in the radial/vertical
directions. To extend the model from the two-dimensional case, we take the impermeable
boundary to be the horizontal plane, z = 0. Likewise, we consider the released shape to be
a cylinder of initial height H and radius R. Since the initial shape of the current is radially
symmetric, it will spread out and remain radially symmetric for all times.

Following the derivation in §2a, the thickness of the current evolves according to (2.20) at early
times. This results in a radial flux of magnitude εubπR2 exiting region I (0 ≤ r ≤ R) into a growing
annular region II (R ≤ r ≤ rn(t)) at the base of the current. Conservation of mass within region II
gives

φ
∂h
∂t

= ub
1
r

∂

∂r

[
rh

∂h
∂r

]
. (5.1)

Boundary conditions correspond with imposing the input flux from region I,

− 2πubrh
∂h
∂r

= εubπR2 : r = R+, (5.2)
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and imposing zero thickness and zero flux at the moving front,

h → 0 : r → rn(t) (5.3)

and

− 2πrubh
∂h
∂r

→ 0 : r → rn(t). (5.4)

By introducing dimensionless coordinates,

h = (πε)1/2RH(ξ , τ ), r = R(1 + ξ ), t = φR
(πε)1/2ub

τ , (5.5)

we get a similar system to [27] (see appendix B for further details). The solution is given in terms
of the similarity variables

η = ξ/τ 1/2 and H= f (η). (5.6)

The shape function f (η) is defined for 0 < η ≤ ηN = 1.155, but has an unphysical singularity at
the origin. This singularity, which is due to a breakdown of the hydrostatic assumption, can
be addressed by introducing a non-hydrostatic (i.e. source-driven) region near the origin, as
discussed in [18]. However, for the sake of simplicity, we ignore such details for the present study.
For our purposes, (5.6) serves as a good approximation for the finger-like growth of region II (i.e.
for r � R). The transition time t∗ is found by matching the two thicknesses of regions I and II,
such that

H − εubt∗

φ
= (πε)1/2R. (5.7)

Hence, the transition time and thickness are given by

t∗ = φR
εub

(α − (πε)1/2) (5.8)

and

H∗ = (πε)1/2R, (5.9)

where in this case the initial aspect ratio is α = H/R. Much later than the transition time t � t∗, the
flow continues to slump as a single region, similar to §2b. In this case, the entire thickness satisfies
(5.1). The boundary condition (5.2) is replaced by a zero flux condition at the origin, which is

∂h
∂r

= 0 : r = 0. (5.10)

Hence, mass conservation indicates that

2π

∫ rn(t)

0
rh dr = πHR2. (5.11)

By introducing dimensionless coordinates,

r = (HR2)1/3ξ , h = (HR2)1/3H(ξ , τ ), t = φ(HR2)1/3

ub
τ , (5.12)

and switching to similarity variables

η = ξ/τ 1/4 and H= f (η)/τ 1/2, (5.13)

we arrive at a system of equations that can be solved analytically to give

f (η) = 1
8

(η2
N − η2), (5.14)

where ηN = 2 (see appendix B for further details).
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2

Figure 6. Swept shape of the gravity currentS(r) in the radially symmetric case. Initial aspect ratio is set toα = 0.2 and the
anisotropy is set to (a) ε = 10−3 and (b) ε = 10−2.

Next, let us briefly discuss the swept shape and swept volume for this case. At early times
t � t∗, the swept volume V is equal to the initial volume plus the instantaneous volume of region
II, such that

V(t) = πHR2 + εubπR2t. (5.15)

At much later times t � t∗, the swept shape S(r) is calculated by finding the time at which the
current thickness is maximal, which is equivalent to η = 21/2 in the similarity solution f (5.14).
Hence, the swept shape is

S(r) = HR2

2r2 , (5.16)

which is only valid for r � R. The swept volume, which is now defined as

V(t) = 2π

∫ rn(t)

0
rS dr, (5.17)

is calculated (following similar steps as in §4) for late times as

V(t) = πHR2 + εubπR2t∗ + πHR2 log
(

t
t∗

)1/4
. (5.18)

To illustrate the radially symmetric case, the swept shape S(r) is plotted in figure 6a,b, for ε = 10−3

and 10−2. As with the two-dimensional case, stronger anisotropy results in a reduced swept
shape (i.e. smaller values of S for r > R). Likewise, although not plotted, the swept volume
increases slowly like V ∝ εt before transition to self-similarity, indicating that anisotropy reduces
the contacted volume of pore space.

6. Modelling CO2 storage in an anisotropic reservoir: injection and post-
injection regimes

In the following section, we apply the models from the present study to account for a typical
injection scenario in a CO2 storage site. Motivated by the Goldeneye field study of [17] (see
fig. 4 of that paper), we consider an aquifer into which CO2 is injected at a constant rate

Q = 2.3 × 10−6 m2 s−1 (per unit width) at a depth of D = 40 m below an impermeable cap rock
for a period of 10 years before being switched off. Unlike in the previous sections, here we
consider an inverted flow scenario, in which a less dense fluid (CO2) is released inside a
more dense fluid (brine). However, the dynamics derived in earlier sections still apply here
according to the Boussinesq approximation [22]. We assume that the reservoir has porosity
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φ = 0.23 and anisotropy ε = 0.005–0.01. Furthermore, we take the buoyancy velocity7 of the CO2
to be ub = 1.65 × 10−5 m s−1. Initially, it takes a time t = Dφ/εub = 1.8 years for the injected
CO2 to reach the cap rock, after which the flow begins spreading laterally, as described by
our model.

First, let us describe the regime of constant injection. Once injected, the CO2 rises upwards as
a buoyant plume until it reaches the impermeable cap rock. It is well known that buoyant plumes
expand as they rise due to both miscible and multi-phase phenomena. The study of [28] shows
that dispersive mixing between the injected and ambient phase causes the total plume width to
grow like ∼√

φαz, where α is the transverse dispersivity. Hence, we might expect that during
the 40 m distance over which the plume rises vertically, it may widen by a factor

√
40 ≈ 6.3. In

practice, it is likely to widen much more than this because of heterogeneity and/or anisotropy
(i.e. via obstruction due to horizontal sedimentary layers). Furthermore, as shown in [17,29,30],
small-scale capillary forces (associated with heterogeneity) can significantly enhance the lateral
spreading of the plume. In the present study, we neglect such effects for the sake of simplicity,
and instead model the plume as a straight column with a constant density difference �ρ between
the injected and ambient phase. In this way, the whole plume rises at speed w = εub and the plume
width is given by d = Q/εub ≈ 14 m.

The results in this section are obtained by connecting the two-dimensional analytical model
from §2a,b with a simple model for the plume as a rectangular region of buoyant fluid rising at
speed w = εub. The only difference between the models used here and in the previous sections
is the inclusion of this vertically rising plume (as well as the field-specific parameter values
used). Initially we model the plume as a rectangular column that begins rising vertically from
the injection point until it encounters the impermeable cap rock, which happens after 1.8 years.
After this, the plume feeds the lateral spread of finger-like regions at the base of the cap rock,
just as described before (except without the shrinking of region I, since the plume is continuously
replenished by the injection point). Once injection stops after 10 years, the remaining plume (now
region I) begins to shrink as it migrates towards the cap rock. Eventually, once the thicknesses
of regions I and II become equal, the flow transitions to a self-similar gravity current, slumping
beneath the cap rock as described earlier.

In figure 7a–c, we illustrate the development of the flow at 5, 11 and 20 years after injection
begins, in the case where ε = 0.01. At 5 years, we can already observe significant growth of the
thin fingers of CO2 (which first commenced after 1.8 years). After 10 years injection stops, and
after 11.8 years, the remaining fluid in the plume column has risen upwards and reached the cap
rock. After this, the flow transitions to a single gravity-driven region which spreads out in a self-
similar fashion, as can be seen by the profile much later at 20 years. We have also compared these
analytical predictions with finite difference computations (see §3) applied to the same scenario.
Much like the plots in figure 2a–c, we find close comparison between the numerical and analytical
results, so we do not include them again here.

In figure 7d–f, similar plots are shown for an aquifer with ε = 0.005. In order to use the same
plume width as above, the input flux must be halved since Q = εubd is proportional to the
anisotropy. To correct this, we have also included plots in figure 7g–i, of the same scenario but
with double the plume width (i.e. approx. 28 m) to maintain the same input flux. The justification
for a wider plume is that stronger anisotropy tends to enhance the lateral spreading of the CO2
[17]. However, by halving the value of ε, it takes twice as long for the plume to initially reach the
cap rock compared with figure 7a–c (since the rise speed is w = εub). Hence, the finger-like regions
only emerge after 3.6 years instead of 1.8 years.

Although we have considered an example here in which the CO2 is injected far below the cap
rock, other scenarios may have an injection point much closer to z = 0. In such cases, the dynamics
during injection are described in [18], in which it was shown that the flow is either in a pressure-
driven or a gravity-driven regime, depending on the time scale of injection and the anisotropy.

7The buoyancy velocity (2.10) is calculated using parameter values listed in [17], which are k = exp(52.544φ − 6.4656) mD,
μ = 5.66 × 10−5 Pa.s and �ρ = 1023.34–691.22 kg m−3.
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Figure 7. Case study in which CO2 is injected into an anisotropic reservoir 40 m below an impermeable cap rock for a period
of 10 years before injection is switched off. (a–c) ε = 0.01 and Q= 2.3 × 10−6 m2 s−1. (d–f ) ε = 0.005 and Q= 1.15 ×
10−6 m2 s−1. (g–i) ε = 0.005 and Q= 2.3 × 10−6 m2 s−1, incorporating a wider plume. In each case, the swept shape of
the plume is shown with red shading. Black circles represent the injection point and are shaded to indicate an injection regime
or hollow to indicate a post-injection regime.

Once injection is switched off the remaining fixed volume of fluid continues spreading according
to the dynamics discussed in the present study. As such, there is an initial period of time in which
the flow is restricted to a boundary layer near the cap rock, after which the flow transitions to
classical self-similar spreading [12]. However, we do not go into the details of this case since the
key ideas have already been discussed.

7. Discussion
The gravity-driven spreading of a finite volume of fluid in anisotropic porous media differs from
the isotropic case since the vertical flow is restricted by the permeability kV � kH. In the initial
dynamics, the bulk of the flow descends slowly with a boundary layer near the impermeable
base that diverts the flow into thin finger-like regions growing slowly in the lateral direction. This
partition of the flow into bulk and finger regions reduces the swept volume of the gravity current
compared with the isotropic case. This indicates that released volumes in anisotropic aquifers
contact a smaller fraction of the available pore space. Hence, the spread of a contaminant in an
anisotropic aquifer may be easier to contain since the contacted volume is reduced. By contrast, in
the case of CO2 sequestration, where the aim is to trap as much CO2 in the pore space as possible,
isotropic aquifers may have better potential in terms of residual trapping (which is a function
of the contacted volume of pore space), though this ignores other trapping mechanisms such as
dissolution, structural trapping and mineralization [19].

It is important to consider the possible limitations of this model for such realistic scenarios.
First and foremost, it must be noted that the anisotropic permeability values kH, kV , are upscaled
quantities that attempt to capture the macroscopic effect of small-scale heterogeneities on the
flow. These upscaled quantities are only a good approximation when the vertical length scale
of the flow H is much larger than the heterogeneity length scale (e.g. the width of sedimentary
layers) or when the permeable interval is inherently anisotropic due to compaction effects. If this
is not the case, more complex flow models are required to treat the spread of fluid beneath and
through successive layers [3,31,32].
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Another consideration for the case of CO2 sequestration is the effect of trapped saturation
on the dynamics and spreading of the current. As the current moves, a fraction of its mass
is lost to residual trapping due to small-scale capillary forces [19] and dissolution within the
surrounding brine [8]. According to some trapping models [7], this can arrest the spread of the
current altogether. Likewise, the spreading could also be arrested by lateral heterogeneities in the
capillary pressure pinning the nose of the gravity current.

While the conclusion of this study is that anisotropy reduces the swept volume of the gravity
current, this does not take into account the enhanced trapping potential due to changes in
the capillary pressure across heterogeneities, also known as capillary heterogeneity trapping
[33]. Specifically, during the imbibition cycle small-scale capillary forces induce a build-up of
saturation beneath each sedimentary layer that can account for as much as 14% of the overall
trapped saturation. Hence, the optimum anisotropy will no doubt strike a balance between the
trapping associated with these heterogeneities and the reduction in swept volume that they
induce.

It is also worth mentioning the flow of the ambient fluid, which we have so far ignored for
this study. In particular, the flow of the ambient fluid may affect the gravity current dynamics
whenever there are restrictions to the local ambient displacement, such as may result from
confinement due to sedimentary strata. In such cases, the viscosity contrast between the released
and ambient fluids can modify the shape of the current [23] and cause fingering instabilities [34].
In the context of carbon sequestration, CO2 is typically 20–30 times less viscous than brine. As
shown in [23] for confined porous layers, this viscosity contrast causes an enhanced spreading of
the CO2 in the shape of a thin finger along the cap rock. Hence, this viscosity contrast distorts
the spreading of CO2 in a similar manner to anisotropy, as studied here. Therefore, the expected
effect of a viscosity contrast in confined anisotropic media is an extremely pronounced finger-like
intrusion of CO2.

In relation to the above discussion, it is interesting to consider the possible scenarios in
which an ‘exchange’ flow (i.e. when horizontal velocities become negative within the gravity
current) may occur [35]. As shown by the streamlines in figure 2 (and confirmed by numerical
simulations), the flows we have so far studied exclusively have fluid draining from region I into
region II. Under certain conditions, however, a return flow may be observed, which is of practical
significance since it would enhance mixing with the ambient. This could be considered either
advantageous in the case of CO2 sequestration or disadvantageous in the case of a contaminant
spill. Such exchange flows may occur for initial shapes that are sufficiently non-convex (i.e. so that
as they slump some areas of flow are reversed), or if the ambient fluid is confined. These scenarios,
which we leave for a future study, would require careful modelling of both released and ambient
phases, and could include an anisotropic permeability field and/or a set of bounding sedimentary
strata.
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Appendix A. Additional plots
In this section, we present some additional plots comparing the numerical solution from §3 with
various approximate and analytical solutions. While in the previous sections, a rectangular shape
was chosen for the initial released shape of dense fluid, here we consider a curved profile with
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Figure 8. Evolution of a gravity current with initial shape given by (3.2) in the case of an isotropic medium ε = 1 (a–c) and an
anisotropic medium ε = 10−2 (d–f ). Dimensionless times are given by ubt/Lφ = 0.87, 1.74, 8.68 in (a–c) and 1.70, 5.09, 17.0
in (d–f ).

initial shape h0(x) given by (3.2). In the case of an isotropic medium ε = 1, this results in immediate
self-similar behaviour, as described in §2b. We use the analytical self-similar solution (2.33) as a
means of verifying our numerical method. In figure 8a–c, profiles of the gravity current are shown
at three different times. Overall, very good agreement is found, indicating the soundness of the
numerical method.

Unfortunately, no benchmark analytical solution exists for anisotropic porous media, but we
can nevertheless compare against the approximate solution derived in this study. In figure 8d–f,
plots are shown for the same curved initial shape (3.2) released in an anisotropic medium with
ε = 10−2. It is straightforward to extend the approximate solution derived earlier to this initial
shape. As such, the bulk fluid region I initially evolves according to

h = h0(x) − εubt
φ

. (A 1)

Meanwhile, region II initially evolves according to the self-similar dynamics (2.27), which
correspond with a finger-like region fed by a constant input flux εubL from region I (see §2a).
These two solutions are then simply joined together to make the plots in figure 8d–f. Overall,
good agreement is achieved, indicating that our model can be extended to this and other such
similar initial shapes.

Appendix B. Further details on similarity solutions
In this section, we summarize the equations that define the different similarity solutions used
in the main text. Let us start with the two-dimensional equations for region II at early times.
In this case, the system of equations deriving from (2.22)–(2.25) after applying coordinate
transformations (2.26)–(2.27) is

1
3

f − 2
3
η

df
dη

= d
dη

[
f

df
dη

]
, (B 1)

− f
df
dη

= 1 : η = 0, (B 2)

f = 0 : η = ηN (B 3)

and − f
df
dη

= 0 : η = ηN . (B 4)

These can be solved numerically for the shape function f (η) and prefactor ηN = 1.482.
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Next, we summarize the two-dimensional equations at late times, once the gravity current has
transitioned to a single slumping region. In this case, the system of equations (2.22), (2.24), (2.29),
(2.30), after applying coordinate transformations (2.31)–(2.32), becomes

− 1
3

f − 1
3
η

df
dη

= d
dη

[
f

df
dη

]
, (B 5)

f = 0 : η = ηN , (B 6)

df
dη

= 0 : η = 0 (B 7)

and
∫ ηN

0
f dη = 1. (B 8)

These can be solved analytically to give (2.33) and ηN = 32/3.
In the radially symmetric case, the governing equations for region II at early times are (5.1)–

(5.4). Hence, after applying the coordinate transformations (5.5)–(5.6), we get the system of
equations

− 1
2
η

df
dη

=
(

1
1 + ητ 1/2

)
d

dη

[
(1 + ητ 1/2)f

df
dη

]
, (B 9)

− 2π

(
1 + ητ 1/2

τ 1/2

)
f

df
dη

= 1 : η = 0, (B 10)

f = 0 : η = ηN (B 11)

and − 2π

(
1 + ητ 1/2

τ 1/2

)
f

df
dη

= 0 : η = ηN . (B 12)

After sufficiently long times 1 � τ � τ∗ (where τ∗ is the dimensionless transition time), the time-
dependence is removed from the above system. In other words, we consider when enough time
has passed that the finger has grown far from the initial shape, but not so long for transition to
occur. In this case, the system of equations simplifies to

−1
2
η

df
dη

= 1
η

d
dη

[
ηf

df
dη

]
, (B 13)

−2πηf
df
dη

= 1 : η = 0, (B 14)

f = 0 : η = ηN (B 15)

and − 2πηf
df
dη

= 0 : η = ηN . (B 16)

These can be solved numerically for the shape function f (η) and prefactor ηN = 1.155.
Finally, we summarize the radially symmetric equations at late times, once the gravity current

has transitioned to a single slumping region. In this case, the system of equations (5.1), (5.3), (5.10),
(5.11), after applying coordinate transformations (5.12)–(5.13), becomes

−1
2

f − 1
4
η

df
dη

= 1
η

d
dη

[
ηf

df
dη

]
, (B 17)

f = 0 : η = ηN , (B 18)

df
dη

= 0 : η = 0 (B 19)
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and 2
∫ ηN

0
ηf dη = 1. (B 20)

These can be solved analytically to give (5.14) and ηN = 2.
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