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Hysteretic wave drag in shallow water
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During motion from deep to shallow water, multiple equilibria may emerge, each with
identical drag—a phenomenon that can be explained by a localized amplification of the
wave drag near the shallow wave speed. The implication of this is the emergence of several
previously unstudied bifurcation patterns and hysteresis routes. Here, we address these
nonlinear dynamics by considering the quasisteady motion of a body between deep and
shallow water, where the depth is slowly varying. We survey several theoretical models
for the drag, compare these against our tow-tank experimental measurements, and then use
the validated theory to explore the bifurcation patterns using two parameters: the depth of
motion and the forcing. In particular, using a case study of a lake with a sinusoidal depth
profile, we illustrate that hysteresis effects can play a significant role on the speed of motion
and journey time, presenting interesting implications for naval and racing applications.
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I. INTRODUCTION

The effect of bathymetry, or water depth, on the drag of an object moving through a body of water
has numerous important applications, ranging from naval and coastal engineering to boat sports and
swimming [1,2]. It is well known that there is a significant difference between the waves generated
by a body moving in deep water and shallow water, and this is reflected in the drag properties. For
example, as first discussed by Havelock [3], wave drag may be either exacerbated or diminished in
shallow water, depending on the speed regime. However, the nonlinear dynamics that result from the
catastrophic emergence of multiple equilibrium states in shallow water have not yet been discussed.
In this paper, we investigate these dynamics, including possible bifurcation and hysteresis behavior,
in the case of body motion in water with slowly varying depth.

To distinguish between deep and shallow water regimes, a commonly used parameter is the
nondimensional ratio between the water depth h and the typical wavelength λ. The dispersive
properties of deep water (h/λ � 1) mean that the wave drag behavior is largely dominated by
a resonance between the boat speed u and the wave speed c [3]. The boat speed is usually
characterized by the length-based Froude number FrL = u/

√
gL, where L is the boat length. Wave

drag is typically largest within a vicinity of FrL ≈ 0.5, and its importance decays as FrL → 0,∞
[4,5]. By contrast, the nondispersive properties of shallow water (h/λ � 1) mean that no such
resonance exists. Instead, since all waves travel at the same speed

√
gh, the only resonance is isolated

to the vicinity where the depth-based Froude number is near unity, Frh = u/
√

gh ∼ 1. The collapse
of this resonance has been compared to shock behavior in hydraulic jumps, and supersonic transition
in aeronautics [6].

The consequence is that when a boat moves from deep water to shallow water, and vice versa,
there is an interesting and unintuitive change of behavior, as first discussed by Havelock [3] and later
by various other authors [6,7]. There are three definitive regimes of interest: subcritical, critical, and
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supercritical. The subcritical region Frh � 1 corresponds to situations where the depth is sufficiently
large that it makes little impact on the drag. The critical regime Frh ∼ 1 exhibits resonance with the
shallow wave speed, causing a drastic accentuation of the wave drag. By contrast, in the very shallow
supercritical regime Frh � 1, the wave drag is less than it would be in infinitely deep water. Hence,
as a body is pushed at constant force between deep and shallow water, it may undergo either an
acceleration or a deceleration, depending on its speed.

There have been numerous studies of the effects of the bathymetry on the wave drag. One of the
most notable is the linear theory of Havelock [3], in which the wave resistance was calculated for
a moving pressure disturbance at the surface of a body of water with finite depth. Another linear
approach, derived by Sretensky [8] and later summarized in English by Weinblum [9], adjusted
the infinite depth theory of Michell [4] to account for both finite depth and width. Other studies
have included nonlinear effects [10], the effects of unsteadiness [11], shear currents [12], and
capillary waves [13]. However, while several previous experiments have demonstrated that the
same drag can be achieved at several different boat velocities (and hence the existence of multiple
equilibrium states) [14,15], the relevant bifurcation behavior and nonlinear dynamics, including
hysteretic motion, have not yet been discussed.

The key to the existence of multiple equilibrium states is a relationship between the drag force
and boat velocity which is nonmonotone, as is the case for motion in shallow water. However,
it should be noted that this phenomenon is not unique to shallow water situations. A similar
nonmonotone drag-velocity relationship has also been observed when a boat moves in water with
a sharp stable stratification, also known as dead water, and possible hysteretic behavior has even
been discussed [16–19]. The same phenomenon can also occur due to the interference between
bow and stern waves [20]. Indeed, some boats are designed in such a way as to amplify this effect,
thereby modifying their drag curve to place operational speeds near a local minimum, as is the case
with the design of the classic bulbous bow [21]. However, as mentioned above, the bifurcation of
equilibrium states, and possible hysteresis routes during motion between deep and shallow water,
have not yet been treated. In particular, the different solution branches that emerge in shallow water
have important consequences on boat racing and naval applications, since they correspond to vastly
different speeds.

In this paper we consider the nonlinear dynamics of a boat pushed at constant force at the
surface of a body of water with varying depth. We restrict our attention to the case where the
length scale associated with depth changes is much larger than the length scale associated with
acceleration/deceleration, similarly to Gourlay [22]. Such an approximation is realistic in a large
number of practical cases. In this way, it is acceptable to consider the wave field steady at each
instantaneous depth, and we focus on the quasisteady dynamics of the boat (where the only
important time-dependence is that associated with depth change).

We compare several different theoretical descriptions of the wave drag, including the linear
theories of Sretensky [8] and Havelock [3], as well as the recent boundary layer model of Benham
et al. [23]. For comparison with these theoretical results, we measure the steady drag at various
different speeds and depths using a tow-tank experiment. The main objective of our experimental
work is not to study depth effects on drag, which have been investigated by previous authors [14,15],
but instead to test our theoretical predictions for the hull shape we use and the relevant range of
flow conditions. In this way, we can confidently use these theoretical predictions to investigate the
bifurcation behavior and nonlinear dynamics, which are the focus of this paper. As a further check
in our comparison, we also include the experiments of the European Development Centre for Inland
and Coastal Navigation, Duisburg (also known as the VBD reports) [15]. After surveying these
different results, we employ our validated theory to explore the bifurcation patterns of the system,
using the two relevant bifurcation parameters: the forcing and the depth. Then, we describe the
quasisteady motion of a boat in a lake with a sinusoidal depth profile as a case study, revealing
interesting speed dynamics and possible hysteresis routes.

064803-2



HYSTERETIC WAVE DRAG IN SHALLOW WATER

II. MOTION IN DEEP AND SHALLOW WATER

We consider the motion of a body of mass m moving in a large region of water with finite depth.
Written in terms of the Cartesian coordinate system (x, y, z), the body motion is purely in the x
direction. The z axis is defined such that the resting water surface is given by z = 0, and the water
subsurface only varies in the direction of motion z = −h(x). The body is driven forwards with a
constant force F , and the position and speed x(t ), u(t ) are governed by the dynamics

ẋ = u, (1)

(m + ma)u̇ = F − Rd (x, u), (2)

where Rd is the drag force, which depends on both space (via the water depth) and the boat speed,
and ma is the added mass [24]. We make the key assumption that the depth is sufficiently slowly
varying that any acceleration/deceleration due to depth change is small, or equivalently

u̇/g � 1. (3)

Body acceleration is compared to gravitational acceleration in (3) because this is the dominant
acceleration scale associated with surface gravity waves. Under the assumption (3), the drag term
in (2) is approximated as its steady value at each instantaneous depth and speed (i.e., ignoring any
dependence on acceleration).

As is often done, we decompose the drag into three different components: the wave drag, form
drag, and skin drag, such that

Rd = Rw + R f + Rs. (4)

The wave drag Rw is the force associated with the sustained generation of waves due to body motion,
and depends greatly on both the speed and the draft [23], as well as the depth of the water [3]. The
form drag R f is the force due to the surrounding pressure field and is effectively a measure of how
streamlined an object is. Finally, the the skin drag Rs relates to the viscous friction between the
wetted body surface and the surrounding fluid.

In the next step, we present experimental drag measurements for a symmetric hull across a range
of depths and speeds. As discussed earlier, the main purpose of these experiments is as a means
of testing the validity of our theoretical predictions for the parameters and hull shape we use, so
we can reliably and accurately use them to study the bifurcation behavior and nonlinear dynamics
in the subsequent sections. For this validation step, we have chosen depth and speed values that
are realistic for sports and naval applications. For example, a coxed eight rowing boat (with length
17.7 m) has a length-based Froude number in the range 0 < FrL < 0.5 [1]. In addition, the minimum
depth of a race is typically around 2–3 m, corresponding to a minimum dimensionless depth of
h/L = 0.11–0.17, and a maximum depth-based Froude number of Frh = 1.15–1.41. Singles rowing
boats, which are around 8.1 m in length, have a minimum depth of around h/L = 0.25–0.37, and a
maximum depth-based Froude number of around Frh = 0.93–1.15. Faster boats, such as motor and
sailing boats, have a larger length-based Froude number (i.e., FrL > 1) and cross the critical Froude
number (Frh = 1) in coastal areas with depths of around 8 m or less.

We measure the total drag force Rd on a three-dimensional (3D)-printed hull experimentally by
pulling it through a large basin of water at constant velocity using a linear motor (see Fig. 1). We
use a symmetric hull, whose shape varies only in the direction of motion x, not in the vertical z, and
is hence represented by a function y/L = f̂ (x̂), where x̂ = x/L, and

f̂ (x̂) = c1 log

(
1 + c2

ec3(x̂−1/2) + c2e−c3(x̂−1/2)

)
, (5)
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FIG. 1. Labeled photograph of our experimental setup: A hull is pulled through the water at constant
velocity by a linear motor and connected via supporting bars to a force sensor. The water depth for each
experiment is uniform.

and the coefficients in (5) are given by c1 = 0.0767, c2 = 0.0302, c3 = 3.5. The dimensions of the
submerged1 hull in the (x, y, z) directions are (L,W, H ) = (18, 3, 2.5) cm, giving aspect ratios in
the horizontal and vertical directions as α = L/W = 6 and β = L/H = 7.2, respectively.

The hull is connected to the motor by two supporting bars and a force/displacement sensor. The
force sensor consists of a set of strain gauges which measure the deformation of the supporting bar
(where the linear force-deformation relationship is determined by a calibration step). We study
several different values of the water depth, h/L = {1.11, 0.81, 0.5, 0.33, 0.24}, and FrL values
between 0.2 and 1, and in each case the water depth is uniform throughout the basin. We do not
study outside this range of FrL, since the signal-to-noise ratio for force measurements becomes too
large. In all cases, the experiments are repeated at least three times for accuracy. We do not allow
the pitch of the boat to change, and we do not study the effects of planing [25]. These measurements
for uniform depth will be used later to approximate the instantaneous drag in a medium with slowly
varying depth (under the quasisteady assumption).

In Fig. 2 we plot the drag force Rd for various different values of the water depth h/L and
the length-based Froude number FrL (though we omit the cases h/L = 0.5, 0.81 since they have
effectively no depth effects, and are very similar to h/L = 1.11). In each case, we plot the drag in
terms of the typical weight needed to balance the Archimedes buoyancy force of a boat of such
volume mg = ρgL3/αβ. Error bars correspond to one standard deviation of the time signal given by
the force sensor. In addition to our drag measurements, we also plot the drag measurements taken
from the VBD reports, as detailed by Hofman [15], for which a Taylor standard series ship hull
shape is used (given in terms of a fifth-order polynomial [26]). For the latter case, we only display
the data in the cases where the same depth ratio was available. There are also several theoretical
results overlaid on the same plot, which will be discussed shortly.

For depths larger than h/L ≈ 0.4, the drag behaves similarly to the case of infinite depth, with a
monotone increasing curve. However, for depths smaller than this, resonance with the shallow water
wave speed accentuates the drag in an isolated region near Frh = 1, causing a pinching of the curve.
This results in the emergence of a stationary point (maximum) near Frh = 1, and another stationary
point (minimum) for a slightly larger FrL. Indeed, there are multiple values of the length-based
Froude number that result in the same drag force, as reported experimentally by other authors [7,14].
This implies that by pushing a boat with constant force in the critical regime, as many as three
different velocities could be achieved.

1Note that the total hull height is 5 cm, but only half of it is submerged beneath the water.
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FIG. 2. (a)–(c) Comparison between experimental measurements and theoretical predictions of the drag
force for different depths and Froude numbers, and an illustration of each depth case above. Theoretical
Rw predictions are summed with wind tunnel measurements of Rf + Rs for comparison with tow-tank
measurements of Rd (see discussion in the main text). The critical depth-based Froude number Frh = u/

√
gh =

1 is indicated in each plot, and areas of accentuated drag are illustrated with shading. An illustration of the
calculated boundary layer profile for our hull shape, which we use in our modification to Sretensky’s theory, is
given in (d) (see the discussion towards the end of Sec. II).

The next step is to compare these results to available theoretical predictions. A full derivation
of the theories used here can be found in the original references, though for our purposes we
simply state the formulas. Two commonly used formulas for the wave drag are the linear theories
of Sretensky [8] and Havelock [3]. Sretensky’s formula, which is an extension of Michell’s formula
for the wave drag at infinite depth [4], assumes an inviscid, irrotational, steady flow past a slender
body. The wave drag is given in nondimensional terms by the formula

Rw

mg
= 2αβ FrL

π

∫ ∞

k̂0

|I (k̂)|2 [sinh k̂ĥ − sinh k̂(ĥ − 1/β )]2

k̂ cosh2 k̂ĥ
√

Fr2
L k̂2 − k̂ tanh k̂ĥ

dk̂, (6)

where the function I (k̂) is given by

I (k̂) =
∫ 1/2

−1/2
f̂ ′(x̂)eix̂

√
k̂/Fr2

L tanh k̂ĥ dx̂, (7)

and hats denote variables nondimensionalized with respect to the body length (e.g., ĥ = h/L). The
minimum nondimensional wave number in the integral (6), k̂0, is given by the formula

Fr2
L k̂0 − tanh k̂0ĥ = 0, (8)

which corresponds to when the body speed matches the wave speed. Note that Sretensky’s formula
is not capable of predicting skin and form drag since it neglects viscosity. However, we can measure
these using a simple wind tunnel experiment and add them [as in (4)] to the theoretical prediction
of the wave drag. Over the range of depths and speeds we consider here, the skin and form drag are
very well approximated by the formula (R f + Rs)/mg = 0.017 Fr2

L.
Unlike Sretensky’s formula which is written in terms of the hull shape f̂ (x̂), the theory of

Havelock [3] relies on knowledge of the pressure disturbance caused by the hull instead. Since it is
difficult to know the pressure disturbance exactly, it is often assumed to be a Gaussian distribution
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with the appropriate aspect ratio values [27]. Hence, we take the surface pressure distribution to be

p(x̂, ŷ)/P0 = e−(x̂2/2+α2 ŷ2/2), (9)

where the magnitude of the pressure distribution P0 is unknown, but should be of the same order
of magnitude as the pressure needed to support a surface disturbance of height comparable to the
draft. This can be confirmed by our observation of typical wave amplitudes compared to the total
draft. Hence, we take P0 = κρgH , where the choice of κ is discussed later. Given this pressure field,
Havelock’s formula (after simplification) gives the drag as

Rw

mg
= κ2

4 Fr2
L αβ

∫ ∞

0

a(k̂∗
x (k̂y), k̂y)

∂b/∂ k̂x(k̂∗
x (k̂y), k̂y)

dk̂y, (10)

where the functions a and b are given by

a(k̂x, k̂y) = e− 1
2π2 (k̂2

x +k̂2
y /α2 )k̂ tanh k̂ĥ, (11)

b(k̂x, k̂y) = (k̂ tanh k̂ĥ)/
(
k̂x Fr2

L

) − k̂x, (12)

and the wave-number magnitude is k̂ =
√

k̂2
x + k̂2

y . Finally, the critical wave number k̂∗
x (k̂y) is given

by

b(k̂∗
x (k̂y), k̂y) = 0. (13)

A recent study by Benham et al. [23] showed that the wave drag at infinite depth can be well
approximated by a modification to the theory of Michell [4] (the precursor to that of Sretensky),
where the shape f (x̂) is replaced by the combined shape of the hull and its surrounding boundary
layer profile f (x̂) + δ(x̂). In particular, the presence of the boundary layer distinguishes the
difference between forward and backward motion for an asymmetric hull, which Michell’s formula
alone is incapable of predicting. Though we focus on symmetric hulls here, we nevertheless make
the same modification to Sretensky’s formula (6) by including the boundary layer profile, which we
extract from a steady k-ω shear stress transport [28] numerical simulation (see Ref. [23] for more
details). Our calculated boundary layer profile is illustrated in Fig. 2(d). This modification appears
to give a better comparison with experimental results than the original.

Theoretical predictions for the wave drag are compared to the experimental results in Figs. 2(a)–
2(c). Qualitatively, all the theoretical approaches capture the drag behavior, though with varying
degrees of accuracy. We find that the best comparison is with Havelock’s formula, where the
magnitude of the pressure disturbance (9) is fitted to give κ = 0.4, with a mean relative error 8%.
The next best comparison is our modified version of Sretensky’s formula (with a mean relative
error 9%), and finally Sretensky’s original formula (with a mean relative error 13%). However, we
note that the best accuracy near the critical regime Frh ∼ 1 is exhibited by our modified version
of Sretensky’s formula, since Havelock’s formula underpredicts drag here. This is possibly due to
the pressure distribution (9) having an insufficiently steep bow and stern characteristic. Havelock’s
integral could be improved with a distribution of potential sources and sinks at the leading and
trailing edges of the hull, as discussed by Zhu et al. [29]. Nevertheless, our boundary layer
modification to Sretensky’s theory provides a sufficiently good representation of the drag.

It should be noted that Sretensky’s formula can be obtained from Havelock’s formula by
calculating an effective pressure disturbance at the free surface. In this way, from a physics
perspective, the only major difference between the two formulas is their treatment of this pressure
disturbance. Hence, a more detailed model of the pressure disturbance (e.g., modified Sretensky) is
likely to generate better results than a less detailed one [e.g., the pressure disturbance (9) inserted
into Havelock’s formula].

We note that linear theory can only be expected to perform well when the wave magnitude
is small, and indeed considerably smaller than the water depth A/h � 1. Otherwise, nonlinear

064803-6



HYSTERETIC WAVE DRAG IN SHALLOW WATER

FIG. 3. Bifurcation diagrams, showing all of the existing branches of the quasisteady equilibrium solutions
to (1) and (2), for the two bifurcation parameters F/mg and h/L. We also illustrate the different subcritical,
critical, and supercritical regimes, the critical forcing F = Fc (see the discussion in Sec. IV), and possible
hysteresis routes.

effects are expected to have an important role, such as wave steepening, cresting, breaking, and
even wetting the subsurface. However, we restrict our experimental study to the range h/L > 0.24,
and the maximum observed wave amplitude we observe has A/h ≈ 0.25. Therefore, we conclude
that nonlinear effects bear little importance here.

Another topic that deserves careful discussion is the possible effect of capillary waves on the
drag, as is mentioned by other authors for small-scale experiments [2]. However, the width of our
hull (3 cm), though small, is six times larger than the capillary length, and at such scales capillary
effects have been shown to play a negligible role on the wave drag [30]. Hence, even though capillary
waves are present, they do not affect the drag significantly, and can therefore be neglected.

Each of the theoretical predictions confirm that multiple solutions exist near the vicinity of
Frh ∼ 1, though the precise shape of the drag curve differs. Since our modified version of
Sretensky’s formula shows the best comparison with experimental data near the critical regime,
we choose this theory to provide a means of predicting the drag in between our experimentally
measured points. In this way, we can accurately describe the motion of a boat with constant forcing
using the quasisteady system (1) and (2).

III. BIFURCATION DIAGRAMS AND STABILITY CRITERIA

There are two bifurcation parameters which govern the nonlinear dynamics of the system (1)
and (2): the depth h/L and the forcing F/mg. We display the bifurcation diagrams for each of these
parameters in Fig. 3, illustrating the different available equilibrium speeds (represented by FrL).
To explore the bifurcation parameter F/mg, we fix the depth at h/L = 0.25. In this case, three
solutions exists in the range F/mg ∈ (0.07, 0.095). To explore the bifurcation parameter h/L, we
fix the forcing at F/mg = 0.08. In this case, three solutions exist in the range h/L ∈ (1/β, 0.4) (no
solution exists when the depth is shallower than the boat itself, h/L � 1/β).

The different solution branches may correspond to significantly different Froude numbers, and
hence equilibrium speeds. For example, at forcing F/mg = 0.08, the available Froude numbers are
between 0.4 and 0.7. That is to say, a boat which is pushed at this forcing could be going at three
possible speeds, where the fastest speed is almost double the slowest. Evidently, this has significant
implications for rowing and sailing races in waters with the depth varying between deep and shallow
regions, since jumping from one branch to another could result in hugely improved race times, and
possibly even new world records.
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To assess the stability of these different branches, we now perform a linear analysis. Consider an
equilibrium solution (x0, u0), such that the right-hand side of (1) and (2) is zero. Then consider a
small perturbation away from this solution,

x = x0 + ε(t ), u = u0 + ε̇(t ). (14)

For the simplicity of the stability analysis, we restrict our attention to the case where the depth is
constant (such that ∂Rd/∂x = 0). Then, inserting (14) into the system (1) and (2), expanding in
terms of the small variable ε(t )/L � 1, and keeping only leading-order terms, we find that

(m + ma)ε̈ + ∂Rd

∂u
(x0, u0)ε̇ = 0. (15)

In this case, the stability is purely determined by the sign of ∂Rd/∂u, or equivalently ∂Rd/∂ FrL.
Consequently, all solutions in Fig. 3(a) which lie on the part of the drag curve with negative slope
are unstable, and all the solutions which lie on the positive slope are stable. Using this knowledge,
we have illustrated the corresponding stability of the different branches in the bifurcation diagrams
using dashed lines. Likewise, the corresponding unstable branch in Fig. 3(b) is also indicated.

We also display several possible hysteresis routes during motion. For example, in Fig. 3(a) we
show how slowly increasing the forcing (starting from zero) would cause a jump increase in velocity
at the turning point near Frh = 1. From here, slowly decreasing the forcing, the boat would return
on a different solution branch until a jump back to the original branch at the second turning point.
Similarly, we show a possible hysteresis route in Fig. 3(b) by varying the depth instead. In this
case, the depth is slowly increased as the boat moves away from a shallow region to a deep region
(initially moving at FrL ≈ 0.7 on the fast solution branch). Once the depth reaches a critical value
of around h/L ≈ 0.4 (at the fold bifurcation), there is a sudden decrease in velocity as the solution
jumps to the slow branch. Upon return to shallow water, the boat remains on this slower stable
branch, since the other branches are topologically disconnected.

It should be noted that in situations where the solution should jump from one branch to another
[as shown in Fig. 3(a)], the resultant acceleration may cause the quasisteady assumption (3) to
become invalid. However, we also note that in such situations, the inertia of the boat will play
an important role in limiting the acceleration/deceleration. To illustrate this, consider a sudden
change in force on the right-hand side of (2) of size �F . In order for the quasisteady assumption to
become invalid, we require u̇/g ∼ 1, such that �F ∼ (m + ma)g. However, such a change in force
is much larger than expected for typical situations [e.g., see Fig. 3(a), where force is in the range
0 � F/mg � 0.12]. Nevertheless, it is expected that in such situations there will be some unsteady
effects in the wave drag, and these could be modeled using an approach similar to Ref. [31]. For the
examples considered here and in the next section, however, the quasisteady approximation is always
appropriate.

IV. IT CAME FROM THE DEEP...

Having validated the theoretical results against experimental data, and having explored the
different available solution branches that occur at various depths and forcing, now we apply the
system (1) and (2) to a case study. Using our modified version of Sretensky’s theory (for the wave
drag), and wind tunnel measurements (for the form and skin drag), we investigate the quasisteady
dynamics of a body moving in a lake of length nL with a sinusoidal depth profile of the form

h(x) = 1/2 [(hmax + hmin) − (hmax − hmin) cos 2πx/nL]. (16)

We choose a large (but realistic) race length n = 400 to ensure a slowly varying depth, and we set
the maximum and minimum depths as hmax/L = 1 and hmin/L = 0.2 to ensure we do not venture
outside of the region we have studied experimentally (so that our predictions remain accurate).
With these values, the maximum calculated value for the acceleration due to depth change is u̇ ≈
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FIG. 4. Phase plane analysis of the case study of a boat moving in a lake with sinusoidal depth (16), where
the rate of change of depth is sufficiently small that the quasisteady approximation is appropriate. Trajectories
for different values of the forcing term F/mg are illustrated in both (a) the depth-Froude plane and (b) the
distance-Froude plane. (c) Times to complete the first half of the race 0 � x � nL/2 for the different solution
branches.

0.6 m/s2, which is much smaller than g = 9.8 m/s2, indicating that the quasisteady approximation
is appropriate.

Motion from shallow to deep water corresponds to 0 < x < nL/2, and likewise from deep
to shallow water nL/2 < x < nL. This canonical depth profile not only exhibits the nonlinear
phenomena we have illustrated both experimentally and theoretically, but also is a physically
realistic scenario. There are many lakes and rivers that have patches of shallow water, and this
study illustrates the possible outcomes that can occur as a boat passes over such a patch.

We consider a sequence of forcing magnitudes Fi/mg between 0.005 and 0.11, and investigate
the quasisteady dynamics in each of these cases. Such forcing values cover the range relevant for
rowing races, where typical forces are around 6%–8% of the total boat weight [1]. At x = 0, where
the depth is at its minimum value, two possible stable solutions are available for all forcing values
in the range 0.07 < F/mg < 0.11. Therefore, for each forcing value i we choose initial conditions
for the system (1) and (2) as one of these two branches,

xi, j (0) = 0, ui, j (0) = u∗
i, j, j = 1, 2, (17)

where the subscript j indicates the branch number, and the starting velocity u∗
i, j is one of the two

stable solutions to the equilibrium equation

Rd (0, u∗
i ) = Fi. (18)

Then, we solve the system (1) and (2) for 0 < t < T , where the final time is determined by
the condition x(T ) = nL. We plot various solutions in Fig. 4, where we indicate different stable
branches with different colours. Figure 4(a) shows the solutions on the phase plane generated by
h(t )/L and FrL(t ). Figure 4(b) shows the solutions FrL(t ) plotted against x(t )/nL.
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The behavior is remarkably different depending on the forcing magnitude. If the forcing is less
than a critical value Fc/mg = 0.07 [see Fig. 3(a)], then only one solution branch exists for all values
of x. The drag is largest in the shallow part and smallest in the deep part, with perfectly symmetric
motion about x = nL/2. On the other hand, for F > Fc the catastrophic emergence of multiple
solution branches and a hysteresis pattern is observed. One branch is a very slow solution, forced
beneath a drag barrier at FrL = √

h/L (or Frh = 1), and behaves much as the solutions observed for
small forcing. The other stable branch of the solution is much faster—in fact, even faster than the
equilibrium solution at infinite depth. However, on the return journey both branches collapse to the
same trajectory due to the fact that the fold bifurcation is topologically disconnected. Nevertheless,
boats which stay on this stable branch have a significantly better race time than the former
ones.

We plot the race times T1/2 for the first half of the race 0 � x � nL/2, for various values of
the forcing in Fig. 4(c). We give the times in terms of a dimensional scaling for the total race√

nL/g, and we illustrate where the two stable branches split at the critical forcing. The time for the
second half of the race is ignored, since both branches converge to the same path and hence this is
less interesting. Well above the critical forcing magnitude Fc/mg, race times between branches can
differ by as much as 30%. This critical value is important because force values F > Fc present an
opportunity to beat records in racing applications.

V. DISCUSSION AND PERSPECTIVES

We have investigated the quasisteady dynamics of a body moving near the surface of a region of
water with slowly varying depth. This work sheds light on previously unstudied bifurcation behavior
that emerges in shallow water. In particular, the two key parameters are the depth h/L and the forcing
F/mg, which can produce as many as three different solution branches (two stable and one unstable)
with potentially large differences in speeds. We showed how this can produce hysteresis routes, and
can have a significant impact on the time to complete a race in a course with varying depth. In
particular, there exists a critical forcing value Fc above which there is an opportunity to accelerate
as one enters a shallow patch of water, or be quashed by a rising drag barrier, depending on one’s
particular branch of the solution.

There are several interesting perspectives following on from this work. First, in boat sports, a
comprehensive study of the effect of race bathymetry on performance for different athletes could be
investigated and compared with our results. It would also be interesting to study the interactions
between multiple bodies moving in proximity, and how this affects the results presented here.
Furthermore, this study motivates an interesting question regarding the optimal strategy of a rower
in a race with variable bathymetry. Indeed, it is clear that if there are regions of deep and shallow
water in a race, the athletes’ rowing power should be distributed accordingly to give the maximum
overall gains. For example, athletes could exert more power in deeper regions of the race, and then
less power during other shallower regions, so long as they are on the faster solution branch. It would
be interesting to study the optimal rower strategy in a similar manner to Keller [32].

Second, as mentioned in the Introduction, the nonmonotone drag-velocity relationship observed
here has also been observed in sharply stratified dead water, and Ekman even predicted possible
hysteresis effects [16,17]. It would be interesting to extend this work to study the nonlinear dynamics
involved when a boat moves in water with a stratification that varies spatially. Such situations are
relevant when navigating near a glacial run-off, where the location and strength of the water density
stratification may vary as one moves.
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