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An oscillating body floating at the water surface produces a wave-field of self-generated waves.
When the oscillation induces a difference in fore-aft wave amplitude squared, these self-generated
waves can be used as a mechanism to propel the body horizontally across the surface (Longuet-
Higgins & Stewart 1964). The optimisation of this wave-driven propulsion (WDP) is the interest
of this work. To study the conditions necessary to produce optimal thrust we will utilise a shallow
water set-up where a periodically oscillating pressure source acts as the body. In this framework,
an expression for the thrust is derived by relation to the aforementioned difference in fore-aft
amplitude squared. The conditions on the source for maximal thrust are explored both analytically
and numerically in two optimal control problems. The first case is where a bound is imposed on
the norm of the control function to regularise it. Secondly, a more physically motivated case is
studied where the power injected by the source is bounded. The body is permitted to have a drift
velocity 𝑈. When scaled with the wave speed 𝑐, the dimensionless velocity 𝑣 = 𝑈/𝑐 divides the
study into subcritical, critical and supercritical regimes and the optimal conditions are presented
for each. The result in the bounded power case is then used to demonstrate how the modulation
of power injected can slowly change the cruising velocity from rest to supercritical velocities.

1. Introduction
Horizontal propulsion along the water surface is seen in the natural world with examples

including various insects (e.g water striders and whirligig beetles) (Bush & Hu 2006) as well as
ducks (Yuan et al. 2021). Motivated by a curiosity to understand the underpinning fluid mechanics
describing the actions of these creatures, various studies have been conducted such as high speed
imaging of insects like the water strider (Hu et al. 2003; Steinmann et al. 2021) and the stricken
honeybee (Roh & Gharib 2019). Inspired by these creatures, robots that mimic their movements
have been developed, with Robostrider (Hu et al. 2003) in the case of the water strider and
SurferBot in the case of the honeybee (Rhee et al. 2022). In a similar vein to such movements
we can achieve horizontal locomotion by riding waves produced by gunwale bobbing on a canoe
(Benham et al. 2022).

The water strider was first thought to use Wave-Driven Propulsion (WDP), but the observation
of subsurface vortex generation (Hu et al. 2003) shifted our understanding to the use of WDP in
combination with vortex-driven propulsion (VDP) (Bühler 2007; Steinmann et al. 2018; Gao &
Feng 2011; Steinmann et al. 2021). We note that although multiple inertial propulsion mechanisms
can be used including vortices (VDP), waves (WDP) or a combination of both (as in the water
strider case), in this study we will focus on optimising thrust using WDP only.

In the case of the honeybee trapped on the water surface, it beats its wings to create an
asymmetry in the fore-aft surface wave-field which is indicative of the use of radiation stresses
described by Longuet-Higgins & Stewart (1964) where the former later applied these ideas
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to propel a small craft (Longuet-Higgins 1977). Radiation stress is defined as proportional to
the difference in the square of the fore-aft amplitudes generating momentum and hence thrust.
Mathematically in the shallow limit the thrust force is (Longuet-Higgins & Stewart 1964)

𝐹𝑇 =
3
4
𝜌𝑔

[
ℎ2

]+
−
, (1.1)

where ℎ is the wave amplitude, 𝜌 is density, 𝑔 is acceleration due to gravity and +,− denotes
the fore and aft waves respectively. Radiation stress can be used to find the thrust generated by
waves to propel bodies on a vibrating surface (Ho et al. 2023; Pucci et al. 2015; Barotta et al.
2023) as well as a body producing its own waves in WDP (Longuet-Higgins 1977; Benham et al.
2024). Motivated by the latter, we will characterise the thrust due to WDP by starting from the
wave equation and recovering the difference in fore-aft amplitude squared. To reduce complexity,
we will work in the shallow water approximation and focus only on surface waves ignoring any
subsurface effects. We also need to characterise the body which we will be studying. Rather than
a rigid body on the surface (Benham et al. 2024), we will keep things general and consider a
pressure region influencing the surface similar to the characterisation of an air-cushion vehicle
(Doctors & Sharma 1972).

Once we have built the mathematical problem, we can look at posing an optimal control problem
to maximise the thrust. Optimisation studies are motivated not only by understanding the natural
world with examples including ducklings wave-riding in their mother’s wake (Yuan et al. 2021)
but also for industrial applications. Optimising WDP can lead to improved fuel efficiency of boats
by extracting propulsive energy from the waves (Bøckmann et al. 2018). Meanwhile in sports,
optimisation of WDP can be used to gain an advantage by using opponents’ waves to improve
propulsion (Tuck & Lazauskas 1998; Dode et al. 2022). This paper will consider an optimal
control problem from a different perspective compared to the examples in Yuan et al. (2021)
and Doctors (1997). Rather than minimising wave resistance, we are interested in maximising
the thrust due to WDP. The only constraints on the problem are the shallow water setup and
appropriate bounds on the pressure source.

The optimal control problem is divided into multiple cases according to the value of the drift
velocity 𝑈. The case where the drift velocity 𝑈 is zero will be studied in Sections 2 and 3. This
will simplify the expressions to allow us to focus on the concepts such as deriving the thrust and
the power. Following the completion of the start-up case, Section 4 will be concerned with the
case where the drift velocity is less than the wave speed (subcritical). This section will introduce
the application of a Galilean transformation to operate in the rest frame of the body. The case
where the body moves at the same velocity as the waves emitted (critical) will follow in Section
5. The intuition will be useful when considering the case where the body is travelling faster
than the wave speed (supercritical) in Section 6 requiring us to think carefully about the left
and right wave since they are both left-travelling after the transformation. This will complete
the template of velocity regimes from which we can study the injection of power necessary to
accelerate from rest to supercritical velocities in Section 7, given that the acceleration is small
enough to maintain the periodic assumptions that are made. Finally, Section 8 discusses the scope
and possible improvements of this work.

2. 1D shallow water waves due to a source
Given a single body of length 𝐿 propelling itself forward using WDP, we wish to study the

conditions to produce maximal forward thrust. We will consider a surface region where there
is a pressure disturbance induced by the motion of the body. To begin, we will consider zero
horizontal velocity 𝑈 of the body. This will be referred to as the start-up phase where a body
is beginning to propel itself forward from rest. Following this, the horizontal velocity will be
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𝑧

𝑝 = 𝑃(𝑥, 𝑡)

𝐿

𝑥

𝐻

ℎ(𝑥, 𝑡)
𝑈

Figure 1: Diagram of the set-up where there is a pressure source 𝑃(𝑥, 𝑡), over a region of length 𝐿,
acting on the surface of the shallow water, with depth 𝐻. This induces waves on the fluid surface,
denoted by ℎ(𝑥, 𝑡), resulting in locomotion with a drift velocity 𝑈.

introduced in three different regimes: subcritical velocities (0 < 𝑣 < 1), critical velocities (𝑣 = 1)
and finally supercritical velocities (𝑣 > 1), where 𝑣 = 𝑈/𝑐 is the drift velocity divided by the
wave speed 𝑐.

To add a simplification which allows us to focus on the surface of the water, we will operate
within the shallow water approximation and a one-dimensional set-up as shown in figure 1. A
pressure source 𝑃(𝑥, 𝑡) is applied at the surface of an otherwise undisturbed body of shallow water
where the fluid is in the region 0 ⩽ 𝑧 ⩽ 𝐻 in the steady state. The source induces a perturbation
so the surface of the water is at 𝑧 = 𝐻 + ℎ(𝑥, 𝑡), where ℎ(𝑥, 𝑡) ≪ 𝐻. The shape of the surface
perturbed by the pressure is encapsulated in ℎ(𝑥, 𝑡). Unlike the honeybee and the water strider
which produce gravity-capillary waves, here we focus on gravity waves and ignore the effect of
surface tension.

As described in Appendix A.1, the perturbed wave field 𝑧 = ℎ(𝑥, 𝑡) satisfies the one-dimensional
wave equation,

𝜕2ℎ

𝜕𝑥2 −
1
𝑐2

𝜕2ℎ

𝜕𝑡2
= −𝑄(𝑥, 𝑡), −∞ < 𝑥 < ∞, (2.1)

where 𝑐 =
√
𝑔𝐻 is the wave speed and 𝑄(𝑥, 𝑡) = 𝑃𝑥𝑥 (𝑥, 𝑡)/𝜌𝑔 is the pressure source term. The

source is defined to be non-zero in the region 𝑥 ∈
[
− 𝐿

2 ,
𝐿
2
]

and zero outside this. Since this
investigation is concerned with a single body undergoing periodic oscillations, with a frequency
𝜔, the variables will be rescaled as follows:

ℎ, 𝑥 ∼ 𝑐

𝜔
, 𝑡 ∼ 1

𝜔
, 𝑄 ∼ 𝜔

𝑐
. (2.2)

After considering these scalings, we arrive at the dimensionless wave equation with a source,

𝜕2ℎ

𝜕𝑥2 −
𝜕2ℎ

𝜕𝑡2
= −𝑄(𝑥, 𝑡), −∞ < 𝑥 < ∞. (2.3)

In dimensionless form, the source 𝑄 is defined to be non-zero on the interval
[
− 𝑙

2 ,
𝑙
2
]
, where 𝑙

is the dimensionless body length 𝑙 = 𝐿𝜔/𝑐. A periodically oscillating source and wave field are
assumed, since there is a single body and the surface is otherwise undisturbed. Therefore, the
source and wave field can be decomposed as follows:

ℎ(𝑥, 𝑡) = Re
[
ℎ̂(𝑥)𝑒𝑖𝑡

]
, 𝑄(𝑥, 𝑡) = Re

[
𝑄̂(𝑥)𝑒𝑖𝑡

]
. (2.4)

The above expressions in (2.4) are used to reduce the PDE for ℎ(𝑥, 𝑡) in (2.3) to an ODE for the
complex function ℎ̂(𝑥),

ℎ̂′′ (𝑥) + ℎ̂(𝑥) = −𝑄̂(𝑥). (2.5)
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The ODE has a general solution that is calculated using Green’s functions,

ℎ̂(𝑥) = 𝐴𝑒𝑖𝑥 + 𝐵𝑒−𝑖𝑥 + 𝑖

2

∫ 𝑥

− 𝑙
2

𝑄̂(𝑋)
(
𝑒𝑖 (𝑥−𝑋) − 𝑒𝑖 (𝑋−𝑥 )

)
d𝑋, (2.6)

where 𝐴, 𝐵 ∈ C are constants to be found. We note that although there is a dependence on 𝑥 in
the integral, for 𝑥 > 𝑙

2 the upper bound will be 𝑙
2 since 𝑄̂(𝑋 > 𝑙

2 ) = 0. Likewise for 𝑥 < − 𝑙
2 the

integral is zero since 𝑄(𝑋 < − 𝑙
2 ) = 0. The following Sommerfeld boundary conditions will be

used, where 𝑘± is the wavenumber:

ℎ̂′
(
± 𝑙

2

)
= ∓𝑖𝑘± ℎ̂

(
± 𝑙

2

)
, (2.7)

and 𝑘± = 1 for the start-up case. This is equivalent to imposing that waves only radiate away from
the source. Through application of the boundary conditions, 𝐴 and 𝐵 are found to be

𝐴 = − 𝑖
2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒−𝑖𝑋 d𝑋, 𝐵 = 0, (2.8)

and the resulting solution for the wave-field is

ℎ̂(𝑥) = − 𝑖
2

∫ 𝑙
2

𝑥

𝑄̂(𝑋)𝑒𝑖 (𝑥−𝑋) d𝑋 − 𝑖

2

∫ 𝑥

− 𝑙
2

𝑄̂(𝑋)𝑒𝑖 (𝑋−𝑥 ) d𝑋. (2.9)

This solution is therefore composed only of a left-travelling wave for 𝑥 < − 𝑙
2 and a right travelling

wave for 𝑥 > 𝑙
2 .

The problem we aim to solve is to find a 𝑄̂ such that it gives maximal thrust. Therefore, an
expression for the thrust is required. The thrust force is not immediately obvious to define but
can be derived through manipulation of the wave equation (2.3) to recover the “radiation stress”
as described by Longuet-Higgins & Stewart (1964), i.e. an asymmetrical wave-field resulting
in a difference in fore-aft amplitude that generates thrust. Multiplying (2.3) by ℎ𝑥 and taking
an integral with respect to 𝑥 (see Appendix A.2), the radiation stress result can be recovered
where the difference in fore-aft amplitude squared (| ℎ̂|2) produces a thrust. As such we derive the
following equivalence:

−1
2

[
𝑘 | ℎ̂|2

]+
− = ⟨𝑄̂, ℎ̂′⟩, (2.10)

where the + and − symbols in (2.10) represent values for 𝑥 that are on the right and left hand side
of the [− 𝑙

2 ,
𝑙
2 ] region respectively and ⟨·, ·⟩ is the time-averaged inner product defined as

⟨ 𝑓 , 𝑔⟩ ≔ 1
𝑇

∫ 𝑇

0

∫ 𝑙
2

− 𝑙
2

Re
[
𝑓 (𝑥)𝑒𝑖𝑡

]
Re

[
𝑔(𝑥)𝑒𝑖𝑡

]
d𝑥 d𝑡 =

1
4

∫ 𝑙
2

− 𝑙
2

𝑓 𝑔∗ + 𝑓 ∗𝑔 d𝑥. (2.11)

The left hand side of (2.10) has included differing fore-aft wavenumbers 𝑘±, but in the start-up
case 𝑘+ = 𝑘− = 1. This will be more important when velocity is introduced to apply a correction
due to the Doppler shift introduced through operating in the moving frame. Relating back to the
radiation stress, we interpret (2.10) as an equivalence relation between the force injected and the
resulting asymmetrical wave-field that induces thrust. It is noted that there is a different prefactor
compared to (1.1) which can easily be fixed through scaling the equations by 3/2, but this will not
be done since it has no effect on the work to follow. Hence, motivated by (2.10) the time-averaged
thrust is taken to be

𝐹̄𝑇

(
𝑄̂(𝑥)

)
≔

∫ 𝑙
2

− 𝑙
2

𝑄ℎ𝑥 d𝑥 = ⟨𝑄̂, ℎ̂′⟩. (2.12)
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Some constraints will be required in the optimal control problem. One case that will be
investigated is when the time-averaged power is bounded. To derive an expression for the power,
we begin with the energy of the wave as the sum of the dimensionless kinetic and potential energy
integrated over the whole domain

𝐸 (𝑡) =
∫ +

−

(
1
2
ℎ2
𝑡 +

1
2
ℎ2
𝑥

)
d𝑥. (2.13)

Power is given as Pow = d𝐸
d𝑡 . Since we are working with periodic oscillations, the time-averaged

power is Pow = 𝐸 (𝑇) − 𝐸 (0) = 0, which means the energy is conserved over a period. The right
hand side of (2.13) can be differentiated with respect to time and (2.3) is substituted and then
time-averaged to generate another equivalence relationship (see Appendix A.3):∫ 𝑙

2

− 𝑙
2

𝑄ℎ𝑡 d𝑥 = −
[
ℎ𝑡ℎ𝑥

]+
−
. (2.14)

The average power injected by the pressure source on the left-hand side of (2.14) is related by
equality to the average power radiated at the boundaries of the pressure source on the right hand
side of (2.14). Since this is an idealised system where no power inputted is lost due to external
effects, this is expected. Motivated by (2.14) we take the time-averaged power injected to be

Pow ≔

∫ 𝑙
2

− 𝑙
2

𝑄ℎ𝑡 d𝑥 = ⟨𝑄̂, 𝑖ℎ̂⟩. (2.15)

Furthermore, we can substitute (2.4) into the right hand side of (2.14) to show
1
2

[
𝑘+ | ℎ̂+ |2 + 𝑘− | ℎ̂− |2

]
= ⟨𝑄̂, 𝑖ℎ̂⟩. (2.16)

As such, while the thrust is the difference in fore-aft amplitude squared, the power is the sum.
Now, we can proceed with posing the optimal control problem. In the work so far, the body is

taken to be at rest. The thrust would introduce movement itself but, for now, we will restrict the
problem to that of “start-up,” with the horizontal drift velocity close to zero, 𝑈 ≈ 0.

3. Optimal locomotion on start-up
We wish to pose an optimal control problem to maximise the thrust as it is defined in (2.12).

The control function 𝑄̂(𝑥) is in the expression for ℎ̂(𝑥) in (2.9) which implicitly enforces that the
wave ODE (2.5) and its boundary conditions (2.7) must be satisfied. Some sort of regularisation
to the problem is required. In this paper we will use two different constraints. Firstly we will
bound the time-averaged norm of the control,

⟨𝑄̂, 𝑄̂⟩ ⩽ 𝜀, (3.1)

for some dimensionless 𝜀 > 0†. Secondly, we will bound the time-averaged power, as it is seen
in (2.15),

⟨𝑄̂, 𝑖ℎ̂⟩ ⩽ 𝛿, (3.2)
for some dimensionless 𝛿 > 0. It is worth noting that, neither constraint requires that 𝑄̂ be
continuous at the boundary and jumps may be present at 𝑥 = ± 𝑙

2 .
Along with an analytical approach, a numerical optimisation approach is taken to validate the

results using the Ipopt solver that is part of the JuMP package in Julia (Lubin et al. 2023). To
pose the problem numerically, the inputs are divided into variables, objective and constraints.

† We define 𝜀 = 𝜀𝑐/𝜔, 𝛿 = 𝛿𝜔/𝜌𝑔𝐻2𝑐 where 𝜀, 𝛿 are dimensional bounds.



6

There are four arrays of variables to represent the real and imaginary parts of 𝑄̂ and ℎ̂ which
are discretised in space. The thrust (2.12), discretised using the trapezium rule, is the objective
function we wish to maximise. As for the constraints, these are the boundary conditions (2.7),
the discretised ODE for ℎ̂(𝑥) (2.5), and either the bounded norm of 𝑄̂, or the bounded power. In
the interest of comparing the analytical and numerical work, we take 𝜀, 𝛿 = 1. These will be dealt
separately in the subsections that follow.

3.1. Case 1 - Bounded Norm
To be physically plausible, the source 𝑄 can be regularised by bounding the 𝐿2 norm which

will provide us with well behaved solutions for 𝑄̂. In (3.1) the value 𝜀 = 1 is taken to compare the
analytical and numerical approaches. The variational calculus approach in Appendix B.1 results
in the following condition to be an optimal solution,

L0𝑄̂ = 0, (3.3)

where the (1D Helmholtz) differential operator L0 = 𝜕𝑥𝑥 + I, applied to 𝑄̂ implies wave-like
solutions,

𝑄̂(𝑥) = 𝐷L 𝑒𝑖𝑥 + 𝐷R 𝑒−𝑖𝑥 , (3.4)
where 𝐷L, 𝐷R ∈ C. In Appendix B.1, we go a step further and find the constants 𝐷L and 𝐷R in
terms of 𝜆, the Lagrange multiplier, which is also found. The constraint on the modulus squared
of the constants is

|𝐷L |2 = 4
(
𝑙 + 𝑙 sin2 (𝑙)
(2𝜆 − 𝑙)2

+ 2 sin2 (𝑙)
2𝜆 − 𝑙

)−1

, |𝐷R |2 = |𝐷L |2
sin2 (𝑙)
(2𝜆 − 𝑙)2

, (3.5)

where 𝜆 is

𝜆± = ±

√︃
𝑙2 − sin2 (𝑙)

2
. (3.6)

The (±) in the expression for 𝜆 corresponds to the choice of thrust direction. To move in the
positive direction (right) corresponds to taking the negative part in 𝜆, thus maximising positive
thrust. Since 𝜆 is the Lagrange multiplier, 𝜆 ∈ R is required. We have the condition

𝑙2 − sin2 (𝑙) > 0, (3.7)

which is true for all real values of 𝑙, so 𝜆 is always real. Hence, in (B 9) we note 𝐷L and 𝐷R are
related via multiplication by a real number meaning the two waves are in phase.

A periodic source 𝑄̂ that is composed of a left travelling and/or right travelling waves of
this form will produce optimum thrust. There are infinitely many such solutions which differ
by an arbitrary choice of phase Arg(𝐷). An example of one such 𝑄̂(𝑥), found numerically, is
displayed in figure 2 along with the resulting wave-field ℎ̂(𝑥). In figure 2b we see a larger wave
on the left hand side which corresponds to positive thrust and hence start-up locomotion in the
right-travelling direction is achieved.

The expressions for |𝐷L |2 and |𝐷R |2 in (3.5) are validated numerically for a given 𝑙. Using
(B 15) allows us to use the right and left waves to relate |𝐷L |2, |𝐷R |2 to the information we have
on 𝑄̂ from the numerical result which is one of infinite solutions that satisfy�����12 ∫ 𝑙

2

− 𝑙
2

𝑄̂(𝑋)𝑒−𝑖𝑋 d𝑋

�����2 = 𝜆2 |𝐷L |2,
�����12 ∫ 𝑙

2

− 𝑙
2

𝑄̂(𝑋)𝑒𝑖𝑋 d𝑋

�����2 = 𝜆2 |𝐷R |2. (3.8)

We note that 𝜆2 |𝐷L |2 and 𝜆2 |𝐷R |2 are related to the amplitude squared of the left and right
travelling waves (| ℎ̂L |2, | ℎ̂R |2) respectively. For 𝑙 = 3𝜋/2, the relative error between the analytical
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(a) (b)

Figure 2: (a) An example of a source, 𝑄̂(𝑥), that results in the optimal thrust under the bounded
norm constraint where 𝑣 = 0 and 𝑙 = 3𝜋/2. (b) The corresponding wave-field, ℎ̂(𝑥) under the
same conditions.

Figure 3: Plot of the time-averaged thrust 𝐹̄𝑇 vs the dimensionless length scale 𝑙 resulting from
the bounded norm optimisation on start-up 𝑣 ≈ 0. It can also be seen that as 𝑙 increases, the
dimensional thrust tends to scale with 𝑙

2 which is the same behaviour found in (3.9) for 𝑙 ≫ 1

and numerical expressions was found to be 0.003% for 𝜆 |𝐷L |2 and 0.014% for 𝜆2 |𝐷R |2. Given
the aforementioned arbitrary choice of phase, the numerical scheme will converge to one of an
infinite set of solutions. If we use (B 15), we find the numerical values for 𝐷L and 𝐷R and use them
in conjunction with (3.4) to demonstrate correspondence between the numerical and analytical
results in figure 2.

The dependence of the expressions on the length scale 𝑙, which is related to 𝜔, motivates that
we investigate how the resulting thrust depends on 𝑙. The thrust can be written (see Appendix
B.1) in terms of the constants that have been found,

𝐹̄𝑇 =
1
4

(
2𝜆2 |𝐷L |2 − 2𝜆2 |𝐷R |2

)
. (3.9)

Plotting the force that results from the numerical optimisation, we see that it increases with 𝑙

(figure 3), which is a property we will return to in Section 4.

3.2. Case 2 - Bounded power
Rather than bounding the norm of 𝑄, let us instead bound the power (2.15). A body on the

water propelling itself through vertical oscillations has control over the power it inputs to generate
thrust. Mathematically, the power is bounded by Pow ⩽ 𝛿, where 𝛿 = 1 is chosen for the following
work. The variational calculus approach in Appendix B.2 is taken and the optimal condition is a
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first order homogeneous ODE,

(𝜕𝑥 + 𝑖𝜆)
(
− 𝑖

2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒𝑖 (𝑋−𝑥 ) d𝑋 − 𝑖

2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒𝑖 (𝑥−𝑋) d𝑋

)
= 0, (3.10)

which results in two solutions depending on the eigenvalue, 𝜆 ∈ R, which again corresponds to
the Lagrange multiplier in the variational calculus. The two solutions for 𝜆 will be denoted as 𝜆1
and 𝜆2 and the corresponding solutions to the ODE (3.10) are given as follows:

𝐶L 𝑒𝑖𝑥 + 𝐶R 𝑒−𝑖𝑥 = 𝐶 𝑒𝑖𝑥 for 𝜆1 = −1, (3.11)

𝐶L 𝑒𝑖𝑥 + 𝐶R 𝑒−𝑖𝑥 = 𝐶 𝑒−𝑖𝑥 for 𝜆2 = 1, (3.12)
where 𝐶L, 𝐶R ∈ C. This gives us the option of a purely left or purely right travelling wave and to
illuminate this fact, the left and right wave amplitudes have been labelled 𝐶L and 𝐶R respectively.
The constants are found by equating coefficients to be

𝐶L = − 𝑖
2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒−𝑖𝑋 d𝑋, 𝐶R = − 𝑖
2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒𝑖𝑋 d𝑋. (3.13)

Similar to the bounded norm case, we can note that 𝐶L and 𝐶R correspond the fore-aft wave
heights respectively. Before making a choice of 𝜆 and discussing that solution, we recall that the
bounded power (2.15), when written in terms of the above constants, gives a condition on |𝐶L |2
and |𝐶R |2,

1
4

(
2 |𝐶L |2 + 2 |𝐶R |2

)
= 1. (3.14)

To achieve a positive thrust, a purely left travelling wave is chosen (𝜆 = −1), meaning 𝐶L = 𝐶

and 𝐶R = 0 (see Appendix B.2). Using (3.14) the condition for optimal thrust is�����− 𝑖2 ∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒−𝑖𝑋 d𝑋

�����2 = 2, and

�����− 𝑖2 ∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒𝑖𝑋 d𝑋

�����2 = 0. (3.15)

These equations are two linear constraints on the function 𝑄̂, constituting thus an underdetermined
system. Therefore there are infinitely many possible solutions that satisfy this. To verify that there
is indeed a positive thrust, the conditions (3.15) are substituted into the thrust formula (2.12) to
give

𝐹̄𝑇 = 1. (3.16)
This makes physical sense, since to get a motion in a right travelling direction, a left travelling
wave would be required. The absence of a wave in the rightward direction agrees with this intuition
since a wave on the right hand side would reduce the difference in fore-aft amplitude which would
reduce the radiation stress and hence reduce the thrust by wasting some power injected.

To validate the numerical result with the analytical expression, we want to do something similar
to what was done in Section 3.1. This time, we have less information because the constraints do
not give us information on 𝑄̂ like (3.8). Therefore, as an ansatz we will prescribe 𝑄̂ to be a step
function of the form

𝑄̂ =


𝛼, if 𝑥 ∈

[
− 𝑙

2 , 0
)
,

𝛽, if 𝑥 ∈
[
0, 𝑙

2
]
,

0, otherwise,
(3.17)

and use the numerical optimisation code to find 𝛼, 𝛽 ∈ C which can then be used to validate ℎ̂.
This will show that there is no wave on the right hand side as is the case in (3.15). Given the step
function in figure 4a, the wave-field is found analytically and numerically and their comparison
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(a) (b)

Figure 4: (a) Resulting plots for the real and imaginary parts of the source 𝑄̂ for the bounded
power case where 𝑈

𝑐
= 𝑣 = 0 and 𝐿𝜔

𝑐
= 𝑙 = 3𝜋/2. (b) A similar plot for the wave-field ℎ̂ for the

same case. There is no wave on the right implying this is the optimum result to start and travel
rightward.

is demonstrated in figure 4b. To fully validate the result, the condition for the the left-travelling
wave in (3.15) and the thrust (3.16) are compared using relative error, which were within 0.008%
and 0.0069% respectively. To validate the right hand wave, the relative error is undefined since
the value we are comparing to is zero. We will instead present the absolute difference in the
numerical value, which is 5.9 × 10−8. Given the prescribed step function can be substituted into
(3.15), we can get constraints on 𝛼 and 𝛽. However, we leave this calculation for Section 4.2 in
the case of general subcritical 𝑣.

4. Subcritical motion 0 < 𝑣 < 1
Up to now, all that has been considered is the start-up case. This section will introduce a

velocity 𝑈 as in figure 1. In dimensionless form, the source is moving at a velocity 𝑣 = 𝑈
𝑐

. The
body velocity is scaled by the velocity of the waves emitted 𝑐 such that the Froude number can
be interpreted like a Mach number, Fr = 𝑈√

𝑔𝐻
= 𝑈

𝑐
= Ma. With this scaling, the dimensionless

velocity is split into three different regimes: subcritical velocities (0 < 𝑣 < 1) where the source is
travelling slower than the waves it emits, supercritical velocities (𝑣 > 1) where the source moves
quicker than the waves it produces, and the critical velocity (𝑣 = 1). We will discuss the latter two
in Sections 6 and 5 respectively. To begin, we will rewrite the optimisation problem to include a
subcritical velocity and discuss the two choices of bound similar to the previous section.

As was the case in Section 3, the assumption of a periodic source is applied. Due to a moving
body in a static frame, expressions for the wave-field and the source are

ℎ(𝑥, 𝑡) = Re
[
ℎ̂(𝑥 − 𝑣𝑡)𝑒𝑖𝑡

]
, 𝑄(𝑥, 𝑡) = Re

[
𝑄̂(𝑥 − 𝑣𝑡)𝑒𝑖𝑡

]
. (4.1)

A Galilean transformation is applied to work in the rest frame of the source. The Galilean
transformation will define new spatial and temporal coordinates 𝑥 and 𝑡,

𝑥 = 𝑥 − 𝑣𝑡 𝑡 = 𝑡. (4.2)

As such, the PDE in (2.3) is reduced to a modified ODE,

(1 − 𝑣2) ℎ̂′′ (𝑥) + 2𝑖𝑣ℎ̂′ (𝑥) + ℎ̂(𝑥) = −𝑄̂(𝑥). (4.3)
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This is solved with the same Green’s function approach as before:

ℎ̂(𝑥) = 𝐴𝑒
𝑖 𝑥̃

1+𝑣 + 𝐵𝑒− 𝑖 𝑥̃
1−𝑣 + 𝑖

2

∫ 𝑥̃

− 𝑙
2

𝑄̂(𝑋)
(
𝑒

𝑖 ( 𝑥̃−𝑋)
1+𝑣 − 𝑒

𝑖 (𝑋− 𝑥̃)
1−𝑣

)
d𝑋, (4.4)

where 𝐴, 𝐵 ∈ C are constants to be found. Sommerfeld boundary conditions will be used again,
but they now take a Doppler shifted form,

ℎ̂′
(
± 𝑙

2

)
= ∓𝑖𝑘± ℎ̂

(
± 𝑙

2

)
, (4.5)

where 𝑘+ = 1
1−𝑣 , 𝑘− = 1

1+𝑣 are the right- and left-travelling Doppler shifted wavenumbers
respectively. The resulting wave field is given by

ℎ̂(𝑥) = − 𝑖
2

∫ 𝑙
2

𝑥̃

𝑄̂(𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1+𝑣 d𝑋 − 𝑖

2

∫ 𝑥̃

− 𝑙
2

𝑄̂(𝑋)𝑒
𝑖 (𝑋− 𝑥̃)

1−𝑣 d𝑋. (4.6)

An equivalent expression for the thrust can be derived (see Appendix A.2) using the same
method as was done to get (2.10) and 𝐹̄𝑇 will be as in (2.12). In this case 𝑘± are the same as in
(4.5) and are interpreted as a correction due to the Doppler shift in the moving frame. Similarly,
the time-averaged power in the moving case can be found. Following the steps taken in Appendix
A.3, the resulting expression for the time-averaged injected power is

Pow = ⟨𝑄̂, 𝑖ℎ̂⟩ − 𝑣⟨𝑄̂, ℎ̂′⟩, (4.7)

where the second term is proportional to the thrust as in (2.12).
Given that we have the power and thrust, the efficiency 𝜂 can be discussed next. The efficiency

will tell us how much of the injected power is used as thrust. In dimensionless form, all that is
required is (2.12) and (4.7) to provide this information

𝜂 =
𝐹̄𝑇

Pow
=

⟨𝑄̂, ℎ̂′⟩
⟨𝑄̂, 𝑖ℎ̂⟩ − 𝑣⟨𝑄̂, ℎ̂′⟩

. (4.8)

Note that in dimensional form, we see that the efficiency is given as 𝜂 = 𝐹̄𝑇 · 𝑐/Pow, because
the energy is being radiated at speed 𝑐. In the start-up case, where the power was bounded to be
Pow = 1 the resulting force was 𝐹̄𝑇 = 1. Hence, the efficiency is 𝜂 = 1 when 𝑄̂ is optimised.
If we had a purely symmetric source, the difference in fore-aft amplitude squared would be zero
resulting in 𝐹̄𝑇 = 0 and hence 𝜂 = 0. We will revisit the efficiency in the discussion of the results
for the bounded norm and power in the subcritical case.

4.1. Case 1 - Bounded norm
Similar to the start-up case (Section 3.1), an analytical approach shows us that to be an optimal

solution the source 𝑄̂(𝑥) must satisfy
L𝑣𝑄̂ = 0, (4.9)

where L𝑣 = (1− 𝑣2)𝜕𝑥̃ 𝑥̃ +2𝑖𝑣𝜕𝑥̃ + I. This means that the source must be composed of a rightward
and leftward Doppler-shifted wave

𝑄̂(𝑥) = 𝐷L𝑒
𝑖 𝑥̃

1+𝑣 + 𝐷R𝑒
− 𝑖 𝑥̃

1−𝑣 , (4.10)

where conditions on 𝐷L, 𝐷R ∈ C are found in Appendix B.1. These are summarised as follows:

|𝐷L |2 = 4
(
𝑙 + 𝑙 (1 − 𝑣2)2

[2𝜆(1 − 𝑣) − 𝑙]2
sin2

(
𝑙

1 − 𝑣2

)
+ 2(1 − 𝑣2)2

2𝜆(1 − 𝑣) − 𝑙 sin2
(

𝑙

1 − 𝑣2

))−1

, (4.11)



11

(a) (b)

Figure 5: (a) Comparison between the analytically and numerically calculated left and (b) right
wave amplitudes squared for 𝑙 = 3𝜋/2 over both subcritical and supercritical velocities. For the
right wave, the numerical scheme becomes unstable close to 𝑣 = 1 and hence it has been hatched.

|𝐷R |2 =
|𝐷L |2 (1 − 𝑣2)2(
2(1 − 𝑣)𝜆 − 𝑙

)2 sin2
(

𝑙

1 − 𝑣2

)
. (4.12)

Again, 𝜆 ∈ R is the Lagrange multiplier associated with the variational calculus, with eigenvalues

𝜆± =

𝑣𝑙 ±
√︂
𝑙2 − (1 − 𝑣2)3 sin2

(
𝑙

1−𝑣2

)
2(1 − 𝑣2)

. (4.13)

It is worth noting than given 𝜆 ∈ R, the constants 𝐷L and 𝐷R are in phase as they are related via
multiplication by a real scalar (see (B 9)). As was the case on start-up, the negative sign is taken
to maximise the thrust for a body moving in the positive (right) direction. We validate that 𝜆 ∈ R,
since

𝑙2 − (1 − 𝑣2)3 sin2
(

𝑙

1 − 𝑣2

)
> 0, (4.14)

is satisfied for all real 𝑙, 𝑣 > 0.
A study over the dimensionless velocity 𝑣 is demonstrated in figures 5a and 5b for 𝑙 = 3𝜋/2.

The forward wave appears to have zero amplitude at certain resonant values of 𝑣 and 𝑙, which
is discussed later in Section 6. The expressions involving 𝐷L and 𝐷R can be compared with
numerics. Using (B 15) to recover 𝜆2 |𝐷L |2 and 𝜆2 |𝐷R |2 in a similar way to (3.8), we show
correspondence within 0.221% and 0.0005 respectively. The latter error is quoted as an absolute
value since the right wave has zero amplitude at resonance points.

Since there is no forward wave in some conditions, we ask, is there an optimal 𝑙 for a given
𝑣? The contour plots in figure 6 best illuminate that the same trend as in figure 3 continues for
subcritical values of 𝑣. For a given 𝑣, maximal thrust is achieved at maximal 𝑙. However, there is
an interesting behavioural difference between smaller and larger length scales. For a fixed 𝑙 that is
large, the force is maximal close to 𝑣 = 0, but as we shrink the length scale, the optimum begins
to move towards 𝑣 = 1, which is demonstrated in figure 6b. For a given short 𝑙, the time-averaged
thrust may be non-monotone with velocity, which is demonstrated in the subcritical part of figure
7b. The efficiency is also plotted showing that 𝜂 = 1 is achieved for a small set of velocities close
to 𝑣 = 1 for small 𝑙. This will be shown in greater detail in Section 6.

4.2. Case 2 - Bounded power
The general approach taken while moving is the same as it is in the start-up case. The variational

calculus approach (Appendix B.2) produces two results depending on the choice of the solution
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(a) (b)

Figure 6: (a) Contour plot where colour corresponds to the magnitude of the force. For a given
𝑣, a larger time-averaged thrust can be achieved with a larger 𝑙. (b) The same heat map over a
range of smaller 𝑙 denoted by the red box in (a) to convey the trend for smaller length scales,
demonstrating maximal thrust at dimensionless velocities closer to 1.

(a) (b)

Figure 7: (a) Time-averaged thrust over velocities from 𝑣 = 0 to 𝑣 = 3 for 𝑙 = 3𝜋/2. The efficiency
is also plotted on the right axis showing the reduction after the last resonance point. (b) A similar
plot for 𝑙 = 𝜋/6 demonstrates that the region of maximal efficiency reduces due to the last and
first resonance points being closer to 𝑣 = 1 for smaller values of 𝑙.

for the Lagrange multiplier, 𝜆:

𝐶L 𝑒
𝑖 𝑥̃

1+𝑣 + 𝐶R 𝑒−
𝑖 𝑥̃

1−𝑣 = 𝐶 𝑒
𝑖 𝑥̃

1+𝑣 for 𝜆1 = −1, (4.15)

𝐶L 𝑒
𝑖 𝑥̃

1+𝑣 + 𝐶R 𝑒−
𝑖 𝑥̃

1−𝑣 = 𝐶 𝑒−
𝑖 𝑥̃

1−𝑣 for 𝜆2 = 1, (4.16)

where

𝐶L = − 𝑖
2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒− 𝑖𝑋
1+𝑣 d𝑋, 𝐶R = − 𝑖

2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒 𝑖𝑋
1−𝑣 d𝑋. (4.17)

The choice of 𝜆 governs whether we are going to maximise the thrust in the positive or negative
direction. Given that the subcritical velocity is positive (0 < 𝑣 < 1), to maximise thrust in the
positive direction, 𝜆1 is chosen. Using (4.15), 𝐶L = 𝐶 and 𝐶R = 0. The power constraint (4.7) is
then used to give�����− 𝑖2 ∫ 𝑙

2

− 𝑙
2

𝑄̂(𝑋)𝑒− 𝑖𝑋
1+𝑣 d𝑋

�����2 = 2(1 + 𝑣),
�����− 𝑖2 ∫ 𝑙

2

− 𝑙
2

𝑄̂(𝑋)𝑒 𝑖𝑋
1−𝑣 d𝑋

�����2 = 0 (4.18)
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and this can be used to show that for all subcritical 𝑣,

𝐹̄𝑇 =
1
4

(
2

1 + 𝑣 |𝐶L |2 −
2

1 − 𝑣 |𝐶R |2
)
= 1. (4.19)

The above results can be verified numerically over the interval 0 ⩽ 𝑣 < 1. The condition for
the left travelling wave (4.18) was tested and the infinity norm of the relative error at each point
sampled was taken to show that all the points were within 0.0010%. Through a similar test the
force (4.19) was shown to be within 0.0011%. As discussed in Section 3.2, the right hand wave
condition of zero (4.18) does not permit the calculation of the relative error so we will just provide
the infinity norm of the absolute difference between the analytical and numerical solution, which
is 1.11 × 10−5.

This is a very general solution since there are infinite solutions for 𝑄̂ that satisfy (4.18). It is
also interesting that we are free to choose any 𝑙 and still maintain an optimal solution that has
𝐹̄𝑇 = 1. This corresponds to an efficiency of 𝜂 = 1 since the power and force are found to be
equal.

To shed some light onto what an example solution would look like, we will return to the
example used in Section 3.2 where 𝑄̂(𝑥) is defined as a step function in the non-zero domain
(3.17). The conditions (4.18) become�����− 𝑖2

(
𝛼

∫ 0

− 𝑙
2

𝑒−
𝑖𝑋
1+𝑣 d𝑋 + 𝛽

∫ 𝑙
2

0
𝑒−

𝑖𝑋
1+𝑣 d𝑋

)�����2 = 2(1 + 𝑣), (4.20)�����− 𝑖2
(
𝛼

∫ 0

− 𝑙
2

𝑒
𝑖𝑋

1−𝑣 d𝑋 + 𝛽
∫ 𝑙

2

0
𝑒

𝑖𝑋
1−𝑣 d𝑋

)�����2 = 0. (4.21)

Equation (4.21) gives us

𝛼 = 𝛽

(
1 − 𝑒

𝑖𝑙
2(1−𝑣)

1 − 𝑒−
𝑖𝑙

2(1−𝑣)

)
= 𝛽 𝜁, (4.22)

where 𝜁 ∈ C. This can be substituted back into (4.20) to show that

|𝛽 |2 = 4
(���𝜁 (

1 − 𝑒
𝑖𝑙

2(1+𝑣)
)
+ 𝑒−

𝑖𝑙
2(1+𝑣) − 1

���2)−1
. (4.23)

If we wish to prescribe that 𝑄̂ be a step function of this form, the constants 𝛼 and 𝛽 are constrained
to satisfy the condition on their modulus squared, and are only defined up to an arbitrary phase,
similar to the bounded norm case. In contrast to the bounded norm case, there is a phase difference
between 𝛼 and 𝛽 since 𝜁 ∈ C.

5. The critical case (𝑣 = 1)
In order to study the whole range of velocities, the critical velocity case (𝑣 = 1) must be studied

separately. This is a simple case because (4.3) reduces to a first order ODE,

2𝑖ℎ̂′ (𝑥) + ℎ̂(𝑥) = −𝑄̂(𝑥). (5.1)

The sole boundary condition required is that the fluid to the right of the body is unperturbed,
since the body is now moving as quickly as the waves that it emits. The boundary condition takes
the form

ℎ̂ = 0 : 𝑥 >
𝑙

2
. (5.2)
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The resulting particular solution for the wave-field ℎ̂(𝑥) is

ℎ̂(𝑥) = − 𝑖
2

∫ 𝑙
2

𝑥̃

𝑄̂(𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1+𝑣 d𝑋, (5.3)

where 𝑣 = 1. Given this expression for ℎ̂, we can recover the thrust through radiation stresses

1
2
𝑘− | ℎ̂− |2 = ⟨𝑄̂, ℎ̂′⟩, (5.4)

where 𝑘− = 1
1+𝑣 is the wavenumber for the left travelling wave with amplitude | ℎ̂− |. This is the

same form as (2.10) but the fore wave is zero.
The same analytical and numerical methods are used as the subcritical case and we will briefly

outline the results. In the bounded norm case there will only be a wave in the aft direction which
from the variational calculus is generated by 𝑄̂ such that,

𝑄̂(𝑥) = 𝐷L𝑒
𝑖 𝑥̃
2 , (5.5)

where 𝐷L is found to satisfy

|𝐷L |2 =
4
𝑙
. (5.6)

Since there is no forward wave, efficiency of 𝜂 = 1 is achieved in this case. The Lagrange
multiplier is found to be 𝜆 = − 𝑙

4 and the condition in (5.6) can be tested using expressions found
in a similar way to (B 15) and 𝜆2 |𝐷L |2 is found to have a relative error of 0.0002%.

For the bounded power case, the condition is the first equation in (4.18) when 𝑣 = 1 (the second
condition is automatically satisfied due to the impossibility of a wave on the right hand side).
Hence our condition is ����� − 𝑖

2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒− 𝑖𝑋
2 d𝑋

�����2 = 4. (5.7)

The resulting force is again 𝐹̄𝑇 = 1. These two results are validated with the numerical approach
with relative errors of 0.037% and 6.07 × 10−12% respectively.

6. Supercritical motion 𝑣 > 1
The final part of our study is the supercritical velocity regime. If we recall, the dimensionless

velocity, 𝑣 = 𝑈/𝑐, is the ratio of the body velocity and the emitted wave velocity. The 𝑣 > 1 case,
corresponds to the body moving faster than the waves that it emits. Hence, any wave emitted will
immediately be overtaken by the body. Similar to the subcritical case, a Galilean transformation
into the moving frame is done using the transformation in (4.2).

The radiative boundary conditions applied in Sections 3 and 4 are no longer suitable because
no wave can possibly propagate on the right hand side and the left hand side will be composed
of two waves of differing wavenumbers. We can use the fact that there is no wave on the right to
our advantage by applying the following boundary conditions

ℎ̂ = ℎ̂′ = 0 : 𝑥 >
𝑙

2
. (6.1)

The Green’s function approach to solving (4.3) is applied again to calculate the solution for the
wave-field, ℎ̂(𝑥):

ℎ̂(𝑥) = − 𝑖
2

∫ 𝑙
2

𝑥̃

𝑄̂(𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1+𝑣 d𝑋 + 𝑖

2

∫ 𝑙
2

𝑥̃

𝑄̂(𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)
𝑣−1 d𝑋, (6.2)
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where we have swapped −(1 − 𝑣) with 𝑣 − 1 to emphasise that this solution is now composed of
two left travelling waves in the rest frame of the body.

A similar approach of recovering the radiation stress is applied to get the expression for the
thrust as in Appendix A.2. The following equivalence relation is recovered:

−1
2

[
𝑘 | ℎ̂|2

]→
← = ⟨𝑄̂, ℎ̂′⟩, (6.3)

where → and ← denote the right and left travelling waves in the rest frame respectively. This
choice of notation represents a subtlety of the supercritical case where both waves are left-
travelling waves in the moving frame. But once we translate back into the rest frame, there is
a forward and backwards wave. As such, 𝑘 represents the Doppler shifted wavenumber in the
moving frame where 𝑘← = 1

1+𝑣 and 𝑘→ = 1
𝑣−1 .

Variational calculus is undertaken in a similar way to the subcritical case. The bounded norm
and power cases will be studied again, but since there are only minor changes, rather than being
split into sections, we simply summarise the results.

In the bounded norm case the optimal condition again is that 𝑄̂(𝑥) is composed of wave-like
parts as was the case in (4.10). This time the corresponding |𝐷L |2, |𝐷R |2 and 𝜆 are

|𝐷L |2 = 4
(
𝑙 + 𝑙 (𝑣2 − 1)2

[2𝜆(𝑣 − 1) − 𝑙]2
sin2

(
𝑙

𝑣2 − 1

)
+ 2(𝑣2 − 1)2

2𝜆(𝑣 − 1) − 𝑙 sin2
(

𝑙

𝑣2 − 1

))−1

, (6.4)

|𝐷R |2 =
|𝐷L |2 (𝑣2 − 1)2(
2(𝑣 − 1)𝜆 − 𝑙

)2 sin2
(

𝑙

𝑣2 − 1

)
, (6.5)

𝜆± =

𝑙 ±
√︂
𝑣2𝑙2 − (𝑣2 − 1)3 sin2

(
𝑙

𝑣2−1

)
2(𝑣2 − 1)

. (6.6)

Similar to before, to maximise the force in the positive direction, the negative sign is taken
in the expression for 𝜆 ∈ R. The analytical and numerical results are verified as they were
in the subcritical case. Looking again at the supercritical part of figure 5b, the forward wave
demonstrates a resonance behaviour where at certain velocities it has zero amplitude. Turning to
the analytical expressions above, we can see that the sin2 (𝑙/(𝑣2 − 1)) term in (6.5) is important.
To verify this, we look at the cases where |𝐷R |2 = 0. To also link to the subcritical case we will
use the fact that sin2 (𝑙/(𝑣2 − 1)) = sin2 (𝑙/(1 − 𝑣2)) and find

sin2
(

𝑙

1 − 𝑣2

)
= 0 =⇒ 𝑣 =

(
1 − 𝑙

𝑛𝜋

) 1
2

, (6.7)

where 𝑛 ∈ Z\{0}. The positive square root is taken on the right hand side since 𝑣 ⩾ 0. In this
current form, we see that the subcritical resonances will be seen for all possible 0 < 𝑛 < 𝑙

𝜋
while

supercritical resonances for all 𝑛 < 0. Equation (6.7) is used to find the velocities where the
right hand wave is zero and is validated in figure 5b. For the supercritical resonances, the largest
resonant velocity will be found when 𝑛 = −1.

We have shown that for a given 𝑙, we can find values of 𝑣 for which the front wave will be
zero. Inspired by the bounded power results, we can use this to our advantage in the interest of
efficiency. For supercritical velocities this will be

𝜂 =
𝐹̄𝑇

Pow
=
−2(𝑣 − 1)𝜆2 |𝐷R |2 + 2(1 + 𝑣)𝜆2 |𝐷L |2
2(𝑣 − 1)𝜆2 |𝐷R |2 + 2(1 + 𝑣)𝜆2 |𝐷L |2

. (6.8)

It is clear from (6.8) that |𝐷R | = 0 will produce maximal efficiency (see figure 7a at the values of
𝑣 where 𝜂 = 1) which is achieved by wasting no power on the wave that inhibits thrust.
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We note that 𝜂 drops for larger 𝑣 because the body is too short to generate a substantial wave-
field to generate thrust. This is demonstrated in figure 7b where the range of values that efficiency
is maximal appears to narrow down for small 𝑙. This manifests itself in (6.7). The last velocity
value before efficiency diminishes at the 𝑛 = −1 resonance will reduce as 𝑙 reduces.

In contrast, the bounded power case will continue to follow the same result in (4.18) where the
only change is a 𝑖

2 rather than − 𝑖
2 preceding the second integral. Since the absolute value is taken,

this has no effect. After inserting these optimal conditions into the expressions for the force, we
find that 𝐹̄𝑇 = 1 still holds. Hence the bounded power case results in 𝜂 = 1 for all 𝑣 > 0. The
ansatz (3.17) can be used again here but we do not include the results since they are similar.

7. Quasi-periodic theory for a changing 𝑣

We have studied the optimal solution for a given velocity and found that in the bounded power
case the time-averaged thrust is a constant (𝐹̄𝑇 = 1). All this work has been done in the absence
of acceleration. We can now ask if we could create a model that introduces a small acceleration
to move between different velocities while maintaining the optimal solution and the assumption
that the waves are periodic? A dimensional acceleration such that ¤𝑈 ≪ 𝜔𝑐, permits the use of
the previous results where acceleration can be interpreted as changing from one moving frame to
the next.

In order to make sense of moving between different velocities, the cruising velocity 𝑣★ must
be known. For a given set of conditions, the balance between thrust 𝐹𝑇 and drag 𝐹𝐷 will return
the equilibrium velocity. Given the expression for the time-averaged dimensionless drag force,
the result from bounding the power will be used to create the aforementioned force balance and
find the intercept which will be referred to as the cruising velocity. The form of 𝑣★ can then be
used to understand how slowly varying the parameters of the problem can be used to move from
𝑣 = 0 to 𝑣 > 1.

To find 𝑣★, we need to introduce a drag force. It is important to note that the true drag may
contain contributions from wave drag, form drag due to shape, and shallow water resonance, but
we skip these details here since they aren’t the focus of the study. Instead, we use a simple drag
law to demonstrate how the force changes with speed. Therefore the dimensional drag will be
considered to be,

𝐹𝐷 =
1
2
𝐶𝐷𝜌𝑈2𝐿, (7.1)

where𝐶𝐷 is a general drag coefficient. Similar to Benham et al. (2024), we will neglect oscillatory
drag and focus solely on horizontal drag. To get the drag in dimensionless form, the dimensional
drag is set equal to the dimensional thrust,

𝐹̄𝑇 = 𝜌𝑔𝐻2⟨𝑄̂, ℎ̂′⟩. (7.2)

Hence, by dividing by 𝜌𝑔𝐻2, the corresponding time-averaged dimensionless drag is found to be

𝐹̄𝐷 =
1
2
𝐶𝐷𝑣

2 𝐿

𝐻
. (7.3)

In the previous sections we chose 𝛿 = 1 for the bounded power case to compare to the numerical
work. In this section we will return to the general result Pow ⩽ 𝛿. The resulting optimal time-
averaged thrust is 𝐹̄𝑇 = 𝛿 which gives us the cruising velocity 𝑣★,

𝛿 =
1
2
𝐶𝐷𝑣

2 𝐿

𝐻
=⇒ 𝑣★(𝛿) =

√︂
2𝐻𝛿

𝐿𝐶𝐷

. (7.4)

The drag coefficient 𝐶𝐷 , the body length 𝐿 and the fluid height 𝐻 are fixed which leaves the
power injected 𝛿 as the only parameter to control the velocity. The velocity and power injected
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(a) (b)

Figure 8: (a) Demonstration of the one period of oscillation where 𝑣★ = 0.2 and 𝑙 = 3𝜋/2. The
body is defined as the region between the vertical lines (𝑥 ∈ [−𝑙/2, 𝑙/2]). The period is divided
into 10 points where the first half period is in blue and the latter in red. (b) A similar plot showing
the time evolution at 𝑣★ = 0.3 demonstrating that the amplitude must increase to maintain the
optimal solution at the larger velocity.

are related by 𝑣★ ∼ 𝛿
1
2 . Using the thrust result 𝐹̄𝑇 = 𝛿, the optimal conditions on the source 𝑄̂ can

be shown to also increase with 𝛿 (see (7.5) below). In terms of 𝛿 and 𝑣★, the variational calculus
produces the following conditions,�����− 𝑖2 ∫ 𝑙

2

− 𝑙
2

𝑄̂(𝑋)𝑒−
𝑖𝑋

1+𝑣★ d𝑋

�����2 = 2𝛿(1 + 𝑣★(𝛿)),
�����− 𝑖2 ∫ 𝑙

2

− 𝑙
2

𝑄̂(𝑋)𝑒
𝑖𝑋

1−𝑣★ d𝑋

�����2 = 0. (7.5)

Hence, as the velocity increases, we need a larger wave to maintain the optimal thrust.
Given a small acceleration we can vary the cruising velocity 𝑣★ with the time-averaged power

injected 𝛿. From here we can make two observations. To move quicker, one has to provide more
power and to remain moving efficiently, the aft wave gets larger while the fore wave remains
zero. This makes physical sense because the faster velocity requires that we generate more thrust
which requires a bigger difference in fore-aft amplitude as is the case in (2.10). Modifications can
be made to this to delve further into the conditions for accelerating from start-up. Motivated by
previous sections, we could prescribe 𝑄̂. For example, if we used a step function like (3.17), we
could study how the conditions for 𝛼 and 𝛽 evolve in terms of the changing speed 𝑣★. We could
also study adding in another constraint on top of the bounded power. If the norm is bounded
simultaneously, there will be an upper bound on the magnitude of the source and hence there
will come a point where the thrust will diminish from achieving 𝐹̄𝑇 = 𝛿 and efficiency will
suffer. Since this section is a demonstration of a simple theory, these modifications will not be
investigated here.

To conclude this section, we will take this opportunity to look at the time-evolution of the
solutions. We will reintroduce the temporal part and study the wave-field ℎ(𝑥, 𝑡) as it is in (4.1)
to produce a graph showing one whole period of oscillation. The numerically optimised bounded
power solution is plotted over one period in figure 8a (note, this is just one optimal 𝑄̂ out of
infinitely many that satisfy (4.18)). To visualise the results of (7.5), a comparison between a
faster cruising velocity is shown in figure 8b. Here we can see that the amplitude of oscillation is
required to be greater to maintain optimal efficiency at the larger velocity.
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8. Discussion
In this paper, we have used gravity waves to generate a thrust to optimally push a body along

the shallow water surface. Given one of two constraints where a bound is placed on either the
power or the norm of the source, the conditions for optimal thrust are found. The analytical work
sheds light on the choice of solution to optimise thrust while the numerical work is a validation
step through solving the problem in a different way. A dimensionless velocity based on the Froude
number (𝑣 = 𝑈/𝑐 = 𝑈/

√
𝑔𝐻) is used to divide the work into subcritical, critical and supercritical

velocities. Studying each of these velocities using a Galilean transformation to operate in the rest
frame of the body allowed us to build a template for the optimal solution at each velocity. In the
case of the bounded power, we use this template to study how the power can be modulated to
vary the cruising velocity from start-up to supercritical velocities. A small acceleration ¤𝑈 ≪ 𝜔𝑐

is required to maintain the periodic assumption. In the bounded norm case, the intuition from the
bounded power result is applied to find resonance points in the bounded norm case to minimise
the forward wave and thus increase efficiency.

One point to note is that this work is not restricted to a fluid dynamics setting. The present
work could also be used as a template to study the optimal conditions associated with variations
of the wave equation and similar PDEs such as the heat, Schrödinger and KdV equations. It would
be interesting to replace the Galilean transformation with a relativistic Lorentz transformation to
allow for time dilation. One major difference will be that the critical and supercritical velocities
will be disallowed due to the constraint that 𝑈/𝑐 < 1.

These results are of course limited by the assumptions made in the shallow water limit, but
they do provide some general guidance. In order to achieve maximal efficiency, the goal based
off of the intuition built here is to minimise the wave that is being produced ahead of the body. To
refine this intuition, we wish to extend to the case where the surface of the shallow water is two
dimensional. The expectation is to see a symmetry on either side of the centreline that is parallel
to the direction of motion, much like what is observed when a honeybee propels itself along
the water surface (Roh & Gharib 2019). Working in the same set of velocity regimes, a similar
template for optimal solutions in the two dimensional case can be used generate an updated
description of the quasiperiodic movement between different velocities under the restrictions of
¤𝑈 ≪ 𝜔𝑐.

We can also study the problems outside of the shallow limit to build a model for the subsurface
dynamics and dispersive waves. Some work with potential flow as used by Benham et al. (2024)
could be applied with the addition of a moving reference frame to operate at different velocities. We
could increase the complexity further with the full Navier-Stokes equations. This will introduce
the potential for vortices to be generated by the movement of the body. Similar to Gao & Feng
(2011) we could then estimate the role that the momentum transferred to the vortices plays in
propulsion as well as the viscous and/or turbulent dissipation which are properties not present in
the current framework. We could then study the difference in propulsion of the body from waves
and vortices (WDP and VDP). Similar to Steinmann et al. (2021) we could estimate the values
of the different forces at play to understand what dominates in our set-up at different scales.

Unlike what is done by Benham et al. (2024), the work presented in this paper only considers
the raft as a pressure region. An interesting study would be to couple this work to a rigid or
flexible beam and investigate the optimal solution for WDP in this case both theoretically and
experimentally. The example of the step function sheds some light onto the type of optimal
pressure distribution that may be required. Similarly, we could also look at optimal solutions for
pressure distributions used in the literature like in the study of air-cushion vehicles (Doctors &
Sharma 1972).

On our way to considering more physical setups, we can broaden our horizon past studying
a periodic source. This will allow the implementation of multiple bodies on the fluid surface as
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well as the study of different incident waves on a single body. Removal of the assumption of
a periodically oscillating body will permit the body to interact with external waves as well as
allowing us to generate a more complete picture of accelerating between different velocities. We
can then study an optimal control problem that could apply the wave-riding and wave-passing that
ducklings demonstrate as described by Yuan et al. (2021). The interactions between the body and
the waves will have to be studied in more detail since the body is always riding the waves produced
by another. We could also use this version of the problem to investigate ways of optimising the
distance between bodies to keep them stationary.

This paper has helped us mathematically validate the key elements such as reducing the forward
wave to maximise efficiency as well as build an understanding on the representation of WDP in
the different velocity regimes. What is clear is there is plenty of more work to do, but this is
a beginning that builds physical intuition in a simplified case that presents the opportunity for
analytical as well as numerical study.
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Appendix A. Derivations of the shallow water wave equation, thrust and power
A.1. Shallow water wave equation

Beginning with the Euler equations, we will work in a one dimensional shallow water set
up where the fluid is of height 𝐻 with characteristic length scale 𝐿𝑤 . Through the use of the
kinematic, dynamic and impermeable base boundary conditions we have a set of equations that
can be solved. A pressure source perturbs the waves such that the dynamic boundary condition
is,

𝑝 = 𝑃(𝑥, 𝑡) : 𝑧 = 𝐻 + ℎ(𝑥, 𝑡), (A 1)
where ℎ(𝑥, 𝑡) ≪ 𝐻 is the height of the resulting wave from the perturbation. We can begin by
solving the rest case where 𝑝 = 𝑝𝑎 (atmospheric pressure) followed by a perturbation with a
pressure 𝑝 = 𝜖𝑃(𝑥, 𝑡), where 𝜖 = 𝐻/𝐿𝑤 ≪ 1 is the aspect ratio. The system of equations is taken
to the leading order and the resulting horizontal momentum equation can be substituted into the
vertically integrated conservation of mass equation to arrive at,

𝜕2ℎ

𝜕𝑥2 −
1
𝑐2

𝜕2ℎ

𝜕𝑡2
= − 1

𝜌𝑔
𝑄(𝑥, 𝑡), −∞ < 𝑥 < ∞. (A 2)

A.2. Time-averaged thrust
We begin by manipulating the wave equation (in the subcritical moving frame) through

multiplication by ℎ̂ 𝑥̃ and integrating, such that,∫ +

−

(
ℎ𝑡𝑡 − 2𝑣ℎ 𝑥̃𝑡 − (1 − 𝑣2)ℎ 𝑥̃ 𝑥̃

)
ℎ 𝑥̃ d𝑥 =

∫ +

−
𝑄ℎ 𝑥̃ d𝑥, (A 3)

where we assume a periodic source such that the wave-field is also periodic,

ℎ = Re
(
ℎ̂(𝑥)𝑒𝑖𝑡

)
. (A 4)

https://github.com/daireodonovan/Optimal-locomotion-using-self-generated-waves.git
https://github.com/daireodonovan/Optimal-locomotion-using-self-generated-waves.git
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Substituting this in and taking the time average, we note that the second term on the left of (A 3)
does not contribute to the thrust after time-averaging. This results in,

1
4

(
𝑣2 − 1

) [
ℎ̂
′
ℎ̂
′∗
]+
−
− 1

4

[
ℎ̂ℎ̂∗

]+
−
=

1
4

∫ 𝑙
2

− 𝑙
2

(
𝑄̂∗ ℎ̂

′ + 𝑄̂ℎ̂
′∗
)

d𝑥. (A 5)

Applying the boundary conditions on the right and left hand side of the body (+ and− respectively)

ℎ̂
′ (+) = − 𝑖

1 − 𝑣 ℎ̂(+), ℎ̂
′ (−) = 𝑖

1 + 𝑣 ℎ̂(−), (A 6)

results in
1
4

(
𝑣2 − 1
(1 − 𝑣)2

��ℎ̂��2�����
+
− 𝑣2 − 1
(1 + 𝑣)2

��ℎ̂��2�����
−
−

��ℎ̂��2�����
+
+

��ℎ̂��2�����
−

)
= ⟨𝑄̂, ℎ̂′⟩, (A 7)

=⇒ −1
2

(
1

1 − 𝑣
��ℎ̂��2�����

+
− 1

1 + 𝑣
��ℎ̂��2�����

−

)
= −1

2

[
𝑘 | ℎ̂|2

]+
−
= ⟨𝑄̂, ℎ̂′⟩, (A 8)

where we have used the notation defined in (2.11). This can be defined as the thrust because the
left hand side is equivalent to the radiation stress, with a difference in fore-aft amplitude. The 𝑘

acts as a correction to the wavenumber due to the waves getting Doppler shifted in the moving
frame. Hence, we define the force as,

𝐹̄𝑇 ≔ ⟨𝑄̂, ℎ̂′⟩. (A 9)

A.3. Time-averaged power
Two routes can be taken to derive the time-averaged power. We could follow steps analogous

to Appendix A.2 and instead of multiplying by ℎ̂ 𝑥̃ we instead multiply by ℎ̂𝑡 . Here we will derive
the power by taking the time derivative of the energy as it is commonly done.

Beginning with the dimensionless energy,

𝐸 =

∫ (+)+𝑣𝑡

(−)+𝑣𝑡

(
1
2
ℎ2
𝑡 +

1
2
ℎ2
𝑥

)
d𝑥, (A 10)

we can transform the energy equation into the moving frame using the Galilean transformation
in (4.2),

𝐸 =

∫ +

−

(
1
2
ℎ2
𝑡
+ 1

2
(1 + 𝑣2)ℎ2

𝑥̃ − 𝑣ℎ 𝑥̃ℎ𝑡
)

d𝑥. (A 11)

Taking the time derivative will give us power,

d𝐸
d𝑡

=

∫ +

−

(
(ℎ𝑡 − 𝑣ℎ 𝑥̃)ℎ𝑡𝑡 + (1 + 𝑣2)ℎ 𝑥̃𝑡ℎ 𝑥̃ − 𝑣ℎ𝑡ℎ 𝑥̃𝑡

)
d𝑥. (A 12)

We can use the wave equation in the moving frame to substitute in for ℎ𝑡𝑡 ,

d𝐸
d𝑡

=

∫ +

−

[
𝑄ℎ𝑡 − 𝑣𝑄ℎ 𝑥̃ + (1 − 𝑣2) (ℎ 𝑥̃ℎ 𝑥̃𝑡 + ℎ𝑡ℎ 𝑥̃ 𝑥̃) − 𝑣(1 − 𝑣2)ℎ 𝑥̃ℎ 𝑥̃ 𝑥̃ + 𝑣ℎ𝑡ℎ 𝑥̃𝑡

]
d𝑥. (A 13)

The first two elements of the integral will be left as they are because they include the control
function 𝑄, but the rest of the terms can be written in terms of derivatives with respect to 𝑥 and
result in boundary terms

d𝐸
d𝑡

=

∫ +

−

(
𝑄ℎ𝑡 − 𝑣𝑄ℎ 𝑥̃

)
d𝑥 + (1 − 𝑣2)

[
ℎ 𝑥̃ℎ𝑡

]+
−
− 1

2
𝑣(1 − 𝑣2)

[
ℎ2
𝑥̃

]+
−
+ 1

2
𝑣

[
ℎ2
𝑡

]+
−
. (A 14)

We are working with periodic waves and if we take the time-average over a period, the result
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is 𝐸 (𝑇) − 𝐸 (0) = 0. Thus we make the equivalence relation between the power radiated by the
waves and the power injected by the source,

−(1 − 𝑣2)
[
ℎ 𝑥̃ℎ𝑡

]+
−
+ 1

2
𝑣(1 − 𝑣2)

[
ℎ2
𝑥̃

]+
−
− 1

2
𝑣

[
ℎ2
𝑡

]+
−
=

∫ +

−

(
𝑄ℎ𝑡 − 𝑣𝑄ℎ 𝑥̃

)
d𝑥. (A 15)

We can see that the second term on the right hand side is precisely the time-averaged thrust as
derived in A.2. Using the periodic assumption to decompose into spatial and temporal parts, we
write the time-averaged power injected as,

Pow = ⟨𝑄̂, 𝑖ℎ̂⟩ − 𝑣⟨𝑄̂, ℎ̂′⟩. (A 16)

Motivated by the thrust being written as the difference in fore-aft amplitude squared, we can
expand out the left hand side of (A 15) in a similar way to what is done in A.2 to show,

1
2

(
1

1 − 𝑣 | ℎ̂+ |
2 + 1

1 + 𝑣 | ℎ̂− |
2
)
= ⟨𝑄̂, 𝑖ℎ̂⟩ − 𝑣⟨𝑄̂, ℎ̂′⟩. (A 17)

Hence, the power is the sum of the fore-aft amplitude squared.

Appendix B. Variational Calculus Approach
B.1. Case 1 - Bounded norm variational calculus

The time-averaged thrust force from (2.12) is used with ℎ̂(𝑥) (4.6) substituted in for the
subcritical case. This will simplify the following steps in the analytical optimisation approach
where the thrust is given by,

𝐹̄𝑇 =
1
4

(
− 1

2(1 − 𝑣)

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑥)
∫ 𝑙

2

− 𝑙
2

𝑄̂∗ (𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1−𝑣 d𝑋 d𝑥

+ 1
2(1 + 𝑣)

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑥)
∫ 𝑙

2

− 𝑙
2

𝑄̂∗ (𝑋)𝑒
𝑖 (𝑋− 𝑥̃)

1+𝑣 d𝑋 d𝑥

)
.

(B 1)

The action 𝑓 (𝑄̂) can be written with the thrust as the objective and the norm of the control
function 𝑄̂(𝑥) as the constraint

𝑓 (𝑄̂) = 1
4

(
− 1

2(1 − 𝑣)

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑥)
∫ 𝑙

2

− 𝑙
2

𝑄̂∗ (𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1−𝑣 d𝑋 d𝑥

+ 1
2(1 + 𝑣)

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑥)
∫ 𝑙

2

− 𝑙
2

𝑄̂∗ (𝑋)𝑒
𝑖 (𝑋− 𝑥̃)

1+𝑣 d𝑋 d𝑥

)
+ 𝜆

4

(∫ 𝑙
2

− 𝑙
2

𝑄̂∗𝑄̂ d𝑥

)
,

(B 2)

where 𝜆 is the Lagrange multiplier. Consider a perturbation 𝜖𝛼(𝑥) to the function 𝑄̂(𝑥). Variation
of the action is defined as

𝛿 𝑓 = lim
𝜖→0

𝑓

(
𝑄̂(𝑥) + 𝜖𝛼(𝑥)

)
− 𝑓

(
𝑄̂(𝑥)

)
𝜖

. (B 3)

The perturbed action is

𝛿 𝑓 (𝑄̂) = 1
4

(
− 1

2(1 − 𝑣)

∫ 𝑙
2

− 𝑙
2

𝛼(𝑥)
∫ 𝑙

2

− 𝑙
2

𝑄̂∗ (𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1−𝑣 d𝑋 d𝑥

+ 1
2(1 + 𝑣)

∫ 𝑙
2

− 𝑙
2

𝛼(𝑥)
∫ 𝑙

2

− 𝑙
2

𝑄̂∗ (𝑋)𝑒
𝑖 (𝑋− 𝑥̃)

1+𝑣 d𝑋 d𝑥

)
+ 𝜆

4

(∫ 𝑙
2

− 𝑙
2

𝛼(𝑥) 𝑄̂∗ (𝑥) d𝑥
)
+ 𝑐.𝑐.,

(B 4)
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where c.c. denotes the complex conjugate.
When the variation is set to zero, the integrand of the 𝑥 integral can be interpreted as equalling

to zero. The expression is further reduced by only taking the coefficients of 𝛼(𝑥) since the
coefficients of 𝛼∗ (𝑥) will also be zero since it is just the complex conjugate. Taking the complex
conjugate of the results gives,

− 1
2(1 − 𝑣)

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒
𝑖 (𝑋− 𝑥̃)

1−𝑣 d𝑋 + 1
2(1 + 𝑣)

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1+𝑣 d𝑋 + 𝜆𝑄̂(𝑥) = 0. (B 5)

The optimal condition can be found through operating on (B 5) with L𝑣 = (1−𝑣2)𝜕𝑥̃ 𝑥̃ +2𝑖𝑣𝜕𝑥̃ + I.
This has a null space proportional to 𝑒

𝑖 𝑥̃
1+𝑣 and 𝑒−

𝑖 𝑥̃
1−𝑣 as shown previously. Therefore, application

of L𝑣 on (B 5) results in
L𝑣𝑄̂ = 0. (B 6)

This equation is easily solved and it tells us that 𝑄̂(𝑥) is composed of the sum of two wave-like
parts

𝑄̂(𝑥) = 𝐷L𝑒
𝑖 𝑥̃

1+𝑣 + 𝐷R𝑒
− 𝑖 𝑥̃

1−𝑣 , (B 7)
where the constants 𝐷L, 𝐷R ∈ C. This information can be substituted back into (B 5), where the
coefficients to 𝑒±

𝑖 𝑥̃
1±𝑣 are matched to generate two equations. Another equation is needed since

there are three unknowns, 𝐷L, 𝐷R and 𝜆. The norm constraint in (3.1) is therefore bounded to an
arbitrary value (we will choose 1) to get another equation to make the following system solvable,

1
2(1 + 𝑣)

(
𝐷L 𝑙 + 𝐷R (1 − 𝑣2) sin

(
𝑙

1 − 𝑣2

))
= −𝜆𝐷L, (B 8a)

− 1
2(1 − 𝑣)

(
𝐷L (1 − 𝑣2) sin

(
𝑙

1 − 𝑣2

)
+ 𝐷R 𝑙

)
= −𝜆𝐷R, (B 8b)

|𝐷L |2 𝑙 + |𝐷R |2 𝑙 + 𝐷∗L𝐷R (1 − 𝑣2) sin
(

𝑙

1 − 𝑣2

)
+ 𝐷∗L𝐷R (1 − 𝑣2) sin

(
𝑙

1 − 𝑣2

)
= 4. (B 8c)

Equation (B 8b) demonstrates the relation between the constants 𝐷L and 𝐷R,

𝐷R = 𝐷L
(1 − 𝑣2)

2(1 − 𝑣)𝜆 − 𝑙 sin
(

𝑙

1 − 𝑣2

)
. (B 9)

Since the Lagrange multiplier 𝜆 is real by definition, 𝐷R is multiplied by a real number. This
means that 𝐷L and 𝐷R are in phase. Equation (B 8a) is used along with (B 9) to show that

𝜆± =
𝑣𝑙 ±

√︁
𝑙2 − (1 − 𝑣2)3𝑠2

2(1 − 𝑣2)
, (B 10)

where 𝑠 = sin
(

𝑙

1−𝑣2

)
. As mentioned already, 𝜆 ∈ R, which means that 𝑙2 − (1 − 𝑣2)3𝑠2 ⩾ 0 must

hold. It can be shown that this is satisfied for all real 𝑙, 𝑣 > 0. Information on 𝐷L and therefore
𝐷R can be found using (B 8c),

|𝐷L |2 = 4
(
𝑙 + 𝑙 (1 − 𝑣2)2

[2𝜆(1 − 𝑣) − 𝑙]2
sin2

(
𝑙

1 − 𝑣2

)
+ 2(1 − 𝑣2)2

2𝜆(1 − 𝑣) − 𝑙 sin2
(

𝑙

1 − 𝑣2

))−1

. (B 11)

Finally (B 9) is used to get information on 𝐷R,

|𝐷R |2 =
|𝐷L |2 (1 − 𝑣2)2(
2(1 − 𝑣)𝜆 − 𝑙

)2 sin2
(

𝑙

1 − 𝑣2

)
. (B 12)
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All that is recovered is information on the modulus squared of 𝐷L, 𝐷R ∈ C. Thus, there are
infinite possible solutions for 𝑄̂ defined up to an arbitrary phase.

In the interest of studying efficiency, we can write the force and power in terms of the constants
𝐷L and 𝐷R. The force is given by

𝐹̄𝑇 =
1
4

©­«− 1
2(1 − 𝑣)

�����∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒 𝑖𝑋
1−𝑣 d𝑋

�����2 + 1
2(1 + 𝑣)

�����∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒− 𝑖𝑋
1+𝑣 d𝑋

�����2ª®¬ , (B 13)

=⇒ 𝐹̄𝑇 =
1
4

(
−2(1 − 𝑣)𝜆2 |𝐷R |2 + 2(1 + 𝑣)𝜆2 |𝐷L |2

)
. (B 14)

We have used the result in (B 7) and substituted in for 𝜆𝑄̂ in (B 5) to compare coefficients,

1
2(1 + 𝑣)

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1+𝑣 d𝑋 = −𝜆𝐷L,
1

2(1 − 𝑣)

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒
𝑖 (𝑋− 𝑥̃)

1−𝑣 d𝑋 = 𝜆𝐷R, (B 15)

and the modulus squared of (B 15) is taken to write the thrust in terms of 𝐷L, 𝐷R. Similarly the
power can be found to be,

Pow =
1
4

(
2(1 − 𝑣)𝜆2 |𝐷R |2 + 2(1 + 𝑣)𝜆2 |𝐷L |2

)
. (B 16)

B.2. Case 2 - Bounded power variational calculus
A similar approach will be taken to the bounded norm case. Beginning with the expression for

the thrust in (B 1), the constraint in this case will be the power. Similar to what was done with the
thrust, the power is simplified by substituting in for ℎ̂(𝑥)

Pow =
1
4

(
1
2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑥)
∫ 𝑙

2

− 𝑙
2

𝑄̂∗ (𝑋)𝑒
𝑖 (𝑋− 𝑥̃)

1+𝑣 d𝑋 d𝑥 + 1
2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑥)
∫ 𝑙

2

− 𝑙
2

𝑄̂∗ (𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1−𝑣 d𝑋 d𝑥

)
−𝑣𝐹̄𝑇 .

(B 17)
The resulting action is

𝑓 (𝑄̂) = (1 − 𝜆𝑣)𝐹̄𝑇

+𝜆
4

(
1
2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑥)
∫ 𝑙

2

− 𝑙
2

𝑄̂∗ (𝑋)𝑒
𝑖 (𝑋− 𝑥̃)

1+𝑣 d𝑋 d𝑥 + 1
2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑥)
∫ 𝑙

2

− 𝑙
2

𝑄̂∗ (𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1−𝑣 d𝑋 d𝑥

)
.

(B 18)

Perturbing the action as it was defined in (B 3) and setting the variation to be zero results in(
− 1

2(1 − 𝑣)

∫ 𝑙
2

− 𝑙
2

𝑄̂∗ (𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1−𝑣 d𝑋 + 1
2(1 + 𝑣)

∫ 𝑙
2

− 𝑙
2

𝑄̂∗ (𝑋)𝑒
𝑖 (𝑋− 𝑥̃)

1+𝑣 d𝑋

)
+ 𝜆

1 − 𝜆𝑣

(
1
2

∫ 𝑙
2

− 𝑙
2

𝑄̂∗ (𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1−𝑣 d𝑋 + 1
2

∫ 𝑙
2

− 𝑙
2

𝑄̂∗ (𝑋)𝑒
𝑖 (𝑋− 𝑥̃)

1+𝑣 d𝑋

)
= 0.

(B 19)

The complex conjugate of (B 19) is then taken to work in terms of 𝑄̂,(
− 1

2(1 − 𝑣)

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒
𝑖 (𝑋− 𝑥̃)

1−𝑣 d𝑋 + 1
2(1 + 𝑣)

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1+𝑣 d𝑋

)
+ 𝜆

1 − 𝜆𝑣

(
1
2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒
𝑖 (𝑋− 𝑥̃)

1−𝑣 d𝑋 + 1
2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1+𝑣 d𝑋

)
= 0.

(B 20)
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The first bracket of equation (B 20) is related to the second bracket by differentiation, leaving an
eigenvalue problem to solve(

𝜕𝑥̃ +
𝑖𝜆

1 − 𝜆𝑣

) (
− 𝑖

2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒
𝑖 (𝑋− 𝑥̃)

1−𝑣 d𝑋 − 𝑖

2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1+𝑣 d𝑋

)
= 0. (B 21)

Equation (B 21) has solutions of the form 𝐶𝑒−
𝑖𝜆

1−𝜆𝑣 𝑥̃ , such that

− 𝑖
2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒
𝑖 (𝑋− 𝑥̃)

1−𝑣 d𝑋 − 𝑖

2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒
𝑖 ( 𝑥̃−𝑋)

1+𝑣 d𝑋 = 𝐶𝑒−
𝑖𝜆

1−𝜆𝑣 𝑥̃ . (B 22)

To find 𝜆, the operator L𝑣 = (1 − 𝑣2)𝜕𝑥̃ 𝑥̃ + 2𝑖𝑣 𝜕𝑥̃ + I is applied to (B 22). All terms proportional
to 𝑒

𝑖 𝑥̃
1+𝑣 and 𝑒−

𝑖 𝑥̃
1−𝑣 are part of the null space of L𝑣 ℎ̂(𝑥) and hence vanish. As a result we have,

L𝑣𝑒
− 𝑖𝜆

1−𝜆𝑣 𝑥̃ = 0, (B 23)

and two solutions for 𝜆 are recovered,

𝜆1 = −1 𝜆2 = 1. (B 24)

There are two possible solutions to the eigenvalue problem,

𝐶L 𝑒
𝑖 𝑥̃

1+𝑣 + 𝐶R 𝑒−
𝑖 𝑥̃

1−𝑣 = 𝐶 𝑒
𝑖 𝑥̃

1+𝑣 for 𝜆1, (B 25)

𝐶L 𝑒
𝑖 𝑥̃

1+𝑣 + 𝐶R 𝑒−
𝑖 𝑥̃

1−𝑣 = 𝐶 𝑒−
𝑖 𝑥̃

1−𝑣 for 𝜆2. (B 26)

Each solution has one constant set to zero and the other non-zero. This corresponds to a purely
left or right travelling wave. Expressions for 𝐶L and 𝐶R are found by matching wave coefficients
in (B 22),

𝐶L = − 𝑖
2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒− 𝑖𝑋
1+𝑣 d𝑋, 𝐶R = − 𝑖

2

∫ 𝑙
2

− 𝑙
2

𝑄̂(𝑋)𝑒 𝑖𝑋
1−𝑣 d𝑋. (B 27)

To find conditions for 𝐶L and 𝐶R to satisfy, the power (A 17) is used,
2

(1 + 𝑣) |𝐶L |2 +
2

(1 − 𝑣) |𝐶R |2 = 4, (B 28)

where (B 27) is used to substitute in 𝐶L and 𝐶R. To maximise thrust in the positive direction, we
will choose a purely left travelling wave (𝜆1). This choice sets 𝐶L = 𝐶 and 𝐶R = 0,�����− 𝑖2 ∫ 𝑙

2

− 𝑙
2

𝑄̂(𝑋)𝑒− 𝑖𝑋
1+𝑣 d𝑋

�����2 = 2(1 + 𝑣),
�����− 𝑖2 ∫ 𝑙

2

− 𝑙
2

𝑄̂(𝑋)𝑒 𝑖𝑋
1−𝑣 d𝑋

�����2 = 0. (B 29)

This is the condition that has to be met for the optimal solution comprising of a left travelling
wave only. Similarly, the thrust can be written in terms of 𝐶L and 𝐶R and when the conditions in
(B 27) are substituted into (B 13), the optimum thrust for a velocity 𝑣 is recovered

𝐹̄𝑇 =
1
4

(
2

1 + 𝑣 |𝐶L |2 −
2

1 − 𝑣 |𝐶R |2
)
= 1. (B 30)
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