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PREDICTING LIFT-OFF TIME WHEN DEEP-FRYING POTATO
DOUGH SNACKS∗

T. BABB† , G. P. BENHAM‡ , J. BOWS§ , R. GONZALEZ-FARINA† , K. B. KIRADJIEV† ,

W. T. LEE¶, AND S. TIBOS§

Abstract. When frying potato snacks, it is typically observed that the dough, which is sub-
merged in hot oil, after some critical time increases its buoyancy and floats to the surface. The
lift-off time is a useful metric in ensuring that the snacks are properly cooked. Here we propose
a multiphase mathematical model for the frying of potato snacks, where water inside the dough is
evaporated from both the top and bottom surfaces of the snack at two receding evaporation fronts.
The vapor created at the top of the snack bubbles away to the surface, whereas the vapor released
from the bottom surface forms a buoyant blanket layer. By asymptotic analysis, we show that the
model simplifies to solving a one-dimensional Stefan problem in the snack coupled to a thin-film
equation in the vapor blanket through a nonlinear boundary condition. Using our mathematical
model, we predict the change in the snack density as a function of time and investigate how lift-off
time depends on the different parameters of the problem.
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1. Introduction. Frying is one of the oldest and most common forms of food
cooking and has multiple functions, including to sterilize, dehydrate, and create prod-
uct texture [1]. Generally there are two types of frying: shallow-fat frying and deep-fat
frying. Here we focus on deep-fat frying in which the food product being cooked is
fully immersed in the oil. During deep-fat frying, some food products undergo density
changes that cause them to rise within the oil bath. This process can be exploited
in food manufacturing, either as a way of determining the stage of cooking, or as a
mechanism to collect the food from the hot oil. For example, in the production of
potato snacks, uncooked snacks are submerged in hot oil by a conveyor belt and, as
the dough cooks, they become buoyant and detach. Once the snack rises from the
belt it interacts with a second submerged component. Knowing the lift-off duration is
key to understanding when and where the snack interacts with the second submerged
component. This interaction has product quality and fryer performance implications.
This must happen at precisely the right moment in order to maximize product qual-
ity and the productivity of the process. To ensure that the snacks robustly detach at
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PREDICTING LIFT-OFF TIME 575

the right time, a better quantitative understanding of the underlying mechanism is
needed. In particular, there are two major contributions to buoyancy due to the gen-
eration of steam, which either escapes from the snack causing a reduction in density
or becomes trapped underneath the snack in a vapor blanket.

Several different mathematical modeling approaches can be found within the food
frying literature. For a comprehensive summary of all relevant types of models, see
[13]. Many of these emphasise transport mechanisms of gases and liquids in porous
media [13, 14, 20, 6, 8]. A commonly used modeling approach is the crust-core model,
in which there are two regions: a dry crust where the water has evaporated and a
wet core. In the crust-core approach, mass and energy equations are used to describe
the heat and flow in each region, and a moving boundary tracks the evaporation front
at the crust-core interface. One major concern in the deep-fat frying literature is
oil uptake into the snack, and several experiments have been gathered regarding this
issue [15, 21, 16, 5, 10]. However, most of these models focus on the oil absorbtion
postfrying, since this is when most of the oil (approximately 80%) enters the snack
[14, 20]. Another important objective of many of these studies is to predict quality
changes (puffiness, shrinkage, etc.) in the snacks as they fry [10, 13, 20]. Some models
also account for the decrease in the temperature of the oil due to moisture loss from
the chip [13, 6].

A dominant feature of the frying process is the evaporation of the water, which can
be observed both from bubbles rising to the surface and in a vapor layer surrounding
the snack. Despite the formation of a vapor blanket being mentioned in several papers
(see, for instance, [8] where it is stated that the bubbles impede oil inflow through the
bottom boundary) this process has not been described in mathematical terms before
within the deep-fat frying literature. In other contexts, film boiling has been studied
and expressions for the vapor layer thickness have been derived, as well as bubble
generation and release frequencies [7, 4]. However, none of the above studies address
the density changes undergone due to the formation of the vapor blanket, and lift-off
is not investigated at all. Furthermore, the effect of the vapor layer, which is a poor
conductor, on the heat transfer in the snack is also not discussed.

In this study, we focus on predicting when a snack becomes buoyant, which hap-
pens within a few seconds of being introduced into the fryer. Thus, we do not consider
structural changes, which occur later on in the frying process, nor do we consider
oil-uptake, which primarily occurs postfrying. We follow the crust-core modeling ap-
proach, and we introduce the novel detail of the formation of a vapor layer under the
snack. We show that the timescales associated with evaporation indicate that the
formation of the vapor blanket is the dominant mechanism for lift-off. We model the
growth of the vapor blanket by coupling a thin film equation to the moving-boundary
problem in the snack. We show that the insulating features of the vapor blanket
play an important role in the dynamics of the evaporation fronts. Whilst all of the
models in the above literature are solved numerically by either finite differences or
finite volumes, here we combine both numerical and analytical results and compare
them together. In particular, we derive closed form solutions for the long-time be-
havior of the evaporation fronts and the shape of the vapor blanket, which are useful
for the manufacturing process. Furthermore, we show that lift-off times are crucially
dependent on the heat transfer properties of the snack.

The remainder of this paper is organized as follows. In section 2 we introduce the
nondimensional mathematical model for the thermal and flow problems within the
snack and vapor blanket. By exploiting the small size of some dimensionless groups,
the problem simplifies to solving an energy conservation equation for each region and
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576 BABB ET AL.

a thin-film equation for the vapor blanket. A formula that relates the density of the
snack to the vapor blanket thickness and the position of the evaporation fronts is also
given. We first solve our model numerically in section 3 using the enthalpy method,
and we are able to identify several regimes in the frying process: a heating period, the
formation of the vapor blanket, and a regime where the blanket volume is constant.
Motivated by these numerical results, and considering that the Stefan number of the
problem is large, in section 4 we investigate a further simplification to the model,
called the quasi-steady limit. In this limit, where the only time-dependence of the
system originates from the motion of the evaporation fronts, we obtain analytical
solutions that agree well with the numerical results and provide insight to the frying
behavior. We discuss our key findings and their relevance to the snack frying process
in section 5.

2. A multiphase model for snack frying. In Figure 1, we illustrate the
scenario considered. We focus on the two-dimensional case, as shown in the diagram,
but we keep the formulation of our mathematical model in three dimensions to be as
general as possible. We propose that the snack is divided into four regions, containing
different combinations of dough, water, and water vapor. Initially, we assume the
dough to be entirely composed of a liquid (water) and solid phase (potato), which is
defined as region 2 in our diagram. When the snack is introduced into the fryer, the
water heats up and begins to evaporate, starting from the exterior. This creates two
outer layers containing water vapor and solid, which we denote regions 1 and 3. As
the water evaporates from the upper evaporation front, it is bubbled away into the
surrounding oil. By contrast, water evaporating from the lower front forms a vapor
layer beneath the snack, which we denote region 4.

In this section, we present a nondimensional mathematical model for the frying
of a long thin snack, which consists of energy, mass, and momentum conservation
equations for each of the different regions of the snack. We simplify these equations
by exploiting small parameters in the system. For predicting lift-off time, we introduce
a relation between the density of the snack, the size of the vapor blanket, and the
position of the evaporation fronts.

2.1. Mathematical model. First, we present the governing equations for each
of the regions in Figure 1. We keep all the equations in nondimensional form for
convenience, but later we provide further discussion on the derivation, including a
list of how each nondimensional parameter is defined. As illustrated in the diagram,

4: Vapor blanket

2: Snack dough + water

Hot oil

1: Snack dough + water vapor

3: Snack dough + water vapor

z = s2(x, t)

z = s1(x, t)

z = 1

z = 0

z = −h(x, t)

Vapor bubbles

Fig. 1. Schematic diagram of the different regions in the snack.
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PREDICTING LIFT-OFF TIME 577

the domain is long and thin with aspect ratio ε = H/L � 1 (where H and L are
the height and length of the snack). We model regions 1 and 3 using an advection-
diffusion equation for the temperature (due to energy conservation), and Darcy’s law
for the fluid flow,

1

St

∂Ti
∂t

+ Pe

(
wi
∂Ti
∂z

+ ε2ui · ∇xyTi

)
=
∂2Ti
∂z2

+ ε2∇2
xyTi, i = 1, 3,(2.1)

ui = −∇Pi, i = 1, 3,(2.2)

0 =
∂2Pi

∂z2
+ ε2∇2

xyPi, i = 1, 3,(2.3)

where Ti(xi, t) is the temperature, ui(x, t) = (ui, vi, wi) is the velocity of the fluid,
and Pi(x, t) is the pressure. Subscripts are used to denote the different regions and
∇xy = ( ∂

∂x ,
∂
∂y , 0) is the gradient in the x-y plane. Our dimensionless parameters are

the Péclet number Pe, and the Stefan number St, and their definitions can be found
in Table 1. We assume that the flow in the core region 2 of the snack is negligible,
and so there is no need for any mass or momentum equations. The heat equation in
this region is

C

St

∂T2

∂t
= K2

(
∂2T2

∂z2
+ ε2∇2

xyT2

)
,(2.4)

where K2 and C are the ratios of thermal conductivities and volumetric heat capacities
between regions 2 and 1. In region 4, we have an advection-diffusion equation for the
temperature and the Navier–Stokes equations for the fluid flow,

Pe

K4

(
1

τ

∂T4

∂t
+ u4 · ∇T4

)
=
∂2T4

∂z2
+ ε2∇2

xyT4,

(2.5)

Re

(
1

τ

∂u4

∂t
+ u4 · ∇u4

)
= −β

[
∂P4

∂x
,
∂P4

∂y
,

1

ε2

∂P4

∂z

]T

+
∂2u4

∂z2
+ ε2∇2

xyu4 −
Re

Fr2 ẑ,

(2.6)

∇ · u4 = 0,(2.7)

where K4 is a ratio of thermal conductivities between regions 4 and 1, τ is the ratio
of the timescale of evaporation to the timescale of evolution of the vapor blanket
z = −h, Re is the Reynolds number, Fr is the Froude number, and β is a measure
of the relative size of the hydrostatic pressure of the oil acting on the gas in region
4 compared to the pressure drop needed to maintain the Darcy gas flux in regions 1
and 3. On the boundaries at z = 1 and z = −h, we have Newton’s law of heating,

1

N

∂T1

∂z
= 1− T1, z = 1,(2.8)

K4

N
√

1 + ε2|∇xyh|2
(
∂T4

∂z
+ ε2∇xyh · ∇xyT4

)
= T4 − 1, z = −h,(2.9)

where N is the Nusselt number, measuring the ratio between heat transfer at the
boundary and heat conduction in the snack. At the boundary, z = −h, we have the
kinematic and dynamic boundary conditions
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578 BABB ET AL.

1

τ

∂h

∂t
= w4 − u4 · ∇xyh, z = −h,(2.10)

D · n =
β

ε

(
P4 − h−

κ

Bo

)
n, z = −h,(2.11)

where Bo is the Bond number, κ is the curvature, D is the strain rate tensor, and n
is the normal to the vapor blanket, given by

κ =
∇2

xyh

(1 + ε2|∇xyh|2)
3/2

,(2.12)

D =


2ε∂u4

∂x ε2
(

∂v4
∂x + ∂u4

∂y

)
ε2 ∂w4

∂x + ∂u4

∂z

ε2
(

∂u4

∂y + ∂v4

∂x

)
2ε∂v4

∂y ε2 ∂w4

∂y + ∂v4

∂z
∂u4

∂z + ε2 ∂w4

∂x
∂v4

∂z + ε2 ∂w4

∂y 2ε∂w4

∂z

 ,(2.13)

n =
1√

1 + ε2|∇xyh|2

−ε
∂h
∂x

−ε∂h∂y
1

 .(2.14)

On the evaporation fronts, z = si for i = 1, 2, we require that the temperature matches
the evaporation temperature of water

T1 = T2 = 0, z = s1,(2.15)

T2 = T3 = 0, z = s2.(2.16)

We also have a Stefan condition describing the motion of the evaporation fronts. This
condition can be derived by balancing the latent energy required to vaporize water
with difference in heat flux on either side of the boundary. This gives us

ṡ1 = K2
∂T2

∂z
− ∂T1

∂z
+ ε2∇xys1 · ∇xy(T1 −K2T2), z = s1,(2.17)

ṡ2 = K2
∂T2

∂z
− ∂T3

∂z
+ ε2∇xys2 · ∇xy(T3 −K2T2), z = s2.(2.18)

The change in density undergone when the water vaporizes creates a flow in regions
1 and 3. As discussed by [17], the equations that describe the flow generated by this
volume change are(

1− 1

R

)
ṡ1 = −w1 + ε2u1 · ∇xys1, z = s1,(2.19) (

1− 1

R

)
ṡ2 = −w3 + ε2u3 · ∇xys2, z = s2,(2.20)

where R is the ratio of the density of water to the density of steam. This signifies the
volume change that happens when the water is vaporized, which drives the gas flow.

Finally, at the interface between the snack and the vapor blanket, we have conti-
nuity of temperature, mass, pressure, and heat flux,

T3 = T4, P3 = ε−2βΓP4, K4
∂T4

∂z
=
∂T3

∂z
, z = 0,(2.21) [

ε2u3, ε
2v3, w3

]
= [u4, v4, w4] , z = 0,(2.22)
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PREDICTING LIFT-OFF TIME 579

where Γ is the nondimensional permeability of the snack. The dimensionless initial
conditions are given by

T2(x, t) = T ∗,(2.23)

s1(x, y, 0) = 1,(2.24)

s2(x, y, 0) = 0,(2.25)

h(x, y, 0) = 0.(2.26)

In Table 1 we list the dimensionless parameters of the system, their definitions in
terms of dimensional parameters, and their approximate values. The dimensional
parameters appearing in Table 1 are Lv, the latent heat of vaporization of water;
φ, the porosity of the snack; χ, the permeability of the snack; hc, the heat transfer
coefficient; γ, the interfacial tension between water and oil; g, the acceleration due
to gravity; H, the height of the snack; L, the length of the snack; µv, the viscosity
of water vapor; To, Tl, Ta, the temperature of the oil, the evaporation temperature
of water, and the ambient air temperature of the snack before entry into the oil;
and ρo, ρl, ρv, the density of oil, water, and vapor, respectively. Finally, we have
some compound parameters for regions 1, 2, and 3, each with a subscript denoting
the relevant region. These are ρj , the compound density; kj the compound thermal
conductivity; and cp,j , the compound specific heat capacity, with j = 1 − 4. These
compound parameters have been determined by taking a volume-weighted average of
the parameters for the individual phases (solid snack, water, vapor) in each region
(see [11], for instance). For example, ρ1 = αsρs + αvρv, where each α represents a
mass fraction.

2.2. Model simplifications. Having calculated the nondimensional parameters
in Table 1, we are motivated to consider the asymptotic limit of

(2.27) Pe, ε, Re, Bo−1, Pe/K4, Pe/K4τ, Re/τ, ε2K2, Re/Fr2, 1/R→ 0.

Note that although a few of these parameter groups associated with the vapor layer
(Re, Pe/K2) are marginal in this scaling, we have also carried out a more complex
scaling in which the thicknesses of regions 3 and 4 are scaled separately. This scaling
confirms that all the dimensionless quantities listed above are small.

Table 1
Dimensionless parameters and their approximate numerical values.

Parameter Definition Value
St Lvφρl/(ρ1cp,1(To − Te)) 8.4
C cp,2ρ2/(cp,1ρ1) 2.1
ε H/L 1.1 × 10−2

Pe cp,4(To − Te)/Lv 5.8 × 10−2

K2 k2/k1 1.4
K4 k4/k1 4.2 × 10−2

τ φρl/ρv 5.8 × 102

Re k1(To − Te)/(Lvµv) 9.2 × 10−1

β LvgρvρoH5/(k1L2µv(To − Te)) 6.5 × 10−1

Γ χ/H2 2.0 × 10−4

N hcH/k1 1.3
T ∗ (Ta − Te)/(To − Te) −1.1
Bo ρogL2/γ 1.1 × 103

R ρl/ρv 1.7 × 103

Fr (k1(To − Te)/ρvLvH2)
√
L/g 4.3
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Under these limits, the only coupling between the flow and thermal problems is
through the boundary conditions (2.10), (2.11), (2.19), and (2.20). The simplified
governing equations for the heat problem are

1

St

∂T1

∂t
=
∂2T1

∂z2
, s1 ≤ z ≤ 1,(2.28)

C

St

∂T2

∂t
= K2

∂2T2

∂z2
, s2 ≤ z ≤ s1,(2.29)

1

St

∂T3

∂t
=
∂2T3

∂z2
, 0 ≤ z ≤ s2.(2.30)

The only dependence of the heat problem on the thickness of the vapor blanket h is
through the lower boundary condition. Hence, the complete set of boundary condi-
tions for the heat problem are

1

N

∂T1

∂z
= 1− T1, z = 1,(2.31)

T1 = T2 = 0, z = s1,(2.32)

ṡ1 = K2
∂T2

∂z
− ∂T1

∂z
, z = s1,(2.33)

T2 = T3 = 0, z = s2,(2.34)

ṡ2 = K2
∂T2

∂z
− ∂T3

∂z
, z = s2,(2.35)

1

N

∂T3

∂z

(
hN

K4
+ 1

)
= T3 − 1, z = 0,(2.36)

where (2.36) is derived by solving for T4 and inserting the solution into (2.21). Specif-
ically, T4 is given in terms of T3 and h by

T4 = 1 +
1

N

(
(z + h)N

K4
+ 1

)
∂T3

∂z

∣∣∣∣
z=0

.(2.37)

In order to obtain an equation for h, we need to follow a series of steps. Firstly, taking
the third component of the simplified version of (2.6) together with the reduced form
of (2.11) we obtain P4 = h throughout region 4. Now, u4 can be found simply by
integrating the reduced form of the first two components of (2.6), as well as (2.7).
Substituting this into the kinematic condition (2.10) gives

1

τ

∂h

∂t
=
β

3
∇xy ·

(
h3∇xyh

)
− w4|z=0.(2.38)

Finally, by considering the fluid problem in region 3, and using the simplified version
of (2.20), we see that w4|z=0 = −ṡ2. Thus, the governing thin-film equation for the
vapor blanket becomes

1

τ

∂h

∂t
=
β

3
∇xy ·

(
h3∇xyh

)
+ ṡ2.(2.39)

We would expect that at the edges of the snack, h would take some finite value and
the pressure would be equivalent to the hydrostatic pressure of the oil. However, in
our thin film equation (2.39) we cannot impose both these conditions, so we choose

(2.40) h = 0, at δΩ0
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PREDICTING LIFT-OFF TIME 581

as the lateral boundary condition, where Ω0 is the cross-section of the snack at z = 0,
and δΩ0 is the boundary of Ω0. We note that in choosing this boundary condition,
we will see that the h will have to have infinite slope at the edges in order to have a
finite flux.

Note that whilst the vapor blanket thickness depends spatially on x and y, h =
h(x, y, t), the temperature only depends on z, except for the boundary condition
(2.36). Hence, it is convenient to replace h in (2.36) by an average film thickness
h =

∫
∂Ω0

h dxdy. Making this substitution, the thermal problem is purely in terms of
z, and the vapor blanket problem is in terms of x and y. We can simplify even further
by assuming that the snack is uniform in the y direction, giving us a one-dimensional
model for the thermal problem in z and a one-dimensional model for the vapor blanket
problem in x. This is the approach taken for the remainder of this study.

2.3. Density calculation and lift-off time. A necessary condition for the
snack to detach from the conveyor belt is that its density is less than that of the
surrounding oil. The reduction of the density of the snack is due to two processes.
Firstly there is loss of mass as water evaporates into steam and leaves the snack.
Secondly the formation of the vapor blanket increases the volume of the snack.

The dimensionless density, ρ, is scaled by the density of oil, ρo, so that ρ = 1
when the snack is neutrally buoyant. The density is given by

ρ(t)

(2.41)

=
1

1 +
∫ 1

0
hdx

(
ρv
ρo

∫ 1

0

hdx+
ρl
ρo
αl(s1 − s2) +

ρv
ρo
αv [1− (s1 − s2)] +

ρs
ρo
αs

)
.

The denominator is the volume of the snack, including the volume of the bubble
given by integrating over h. The numerator is the mass of the snack broken into
contributions from the gas in the bubble, liquid water in region 2, water vapor in
regions 1 and 3, and the solid component of the snack. Therefore, the nondimensional
lift-off time, which we denote t∗, is the first time1 for which

(2.42) ρ(t∗) < 1.

3. Numerical approach. Our first approach is to solve (2.28)–(2.30), (2.39)
numerically using the enthalpy method [3, 18]. The nondimensional temperature, T ,
is related to the nondimensional enthalpy, θ, in the following way:

(3.1) T =


StK2

C θ : θ < 0,

0 : 0 ≤ θ ≤ 1,

St(θ − 1) : θ > 1.

The enthalpy method conveniently reduces the problem to solving the single partial
differential equation

(3.2)
∂θ

∂t
=
∂2T

∂z2

1Note that in reality, there may be some surface tension effects holding the snack down to the
solid substrate, therefore delaying lift-off time. However, since these depend on the specific surface
properties of the fryer substrate, we do not study such effects here.
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within the entire domain 0 ≤ z ≤ 1, where θ and T are related via (3.1). We solve
(2.39) and (3.2) using the method of lines with a fourth order central finite difference
scheme in space and a fourth order explicit Runge–Kutta scheme in time, where
at each time step we update T using the relation (3.1). It is possible to achieve
even greater accuracy using other more detailed schemes, such as adaptive time-
stepping and spectral methods, but we find that our current approach is well within
the convergence regime and is sufficiently accurate for the purposes of this study.

We plot the solution in Figures 2 and 3, illustrating the evolution of the tem-
perature, the vapor blanket, and the resultant snack density. We identify several
clear regimes in the frying process, which we indicate in the density plot in Figure
3a. Initially the snack is plunged into the oil at room temperature, and so the first
regime consists of a heating period, bringing the temperature within the snack to
the evaporation temperature. During this heat diffusion regime, the snack is entirely

Fig. 2. (a,b,c,d) Numerical solution at t = 0, 0.02, 0.1, 0.8, showing a color plot of the temper-
ature in the snack, a corresponding line plot of the temperature, and the film thickness beneath the
snack.
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PREDICTING LIFT-OFF TIME 583

Fig. 3. (a) Numerical solution for the density evolution over time, indicating the critical density
for lift-off ρ = 1. (b) Evolution of the evaporation fronts s1 and s2.

composed of liquid and solid (region 2). Once the temperature is near the boiling
point everywhere and equal to the boiling temperature at the edges of the snack, the
latent heat begins to be removed. As the latent heat is removed from the edges of
the snack, two evaporation fronts recede into the interior of the snack, bubbling away
vapor through the top and bottom. This is the second regime of the process, during
which the vapor blanket is formed and inflates very rapidly, causing a sudden drop
in density. Hence, this is denoted the bubble inflation regime. However, the vapor
blanket quickly reaches a steady state, bringing us to the third and final regime of
the process. During this regime, even though the blanket thickness is approximately
constant, the evaporation fronts continue to move inwards, and so we denote this the
quasi-steady regime. In particular, the fact that the blanket remains at near-constant
volume can only be explained by a constant growth rate of the evaporation front ṡ2 in
(2.39), and this is in accordance with our numerical observations in Figure 3b. Fur-
thermore, the temperature within each region is approximately linear with z, as can
be seen in Figure 2d. This piecewise linear temperature profile, which is characteristic
of the quasi-steady limit [3, 12, 2], is due to the large Stefan number in (2.28)–(2.30).
Later in section 4 we will use our numerical observations from Figure 2d to motivate
an asymptotic treatment of the quasi-steady behavior by taking the limit of large
Stefan number. We also note that, as mentioned at the end of section 2.2, the slope
of the blanket at the edges of the snack is infinite, which is most visible in Figure 2d.
Thus, we have used a refined spatial grid in the numerical solution.
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The lift-off time of the snack is taken as the time at which the density falls below
the oil density (2.42). For the parameters used here, this corresponds to a time of
t ≈ 0.1, or in dimensional terms, ∼ 1 second, which is in agreement with observations
in the frying industry. A key result from our model is that the lift-off time is largely
controlled by the inflation of the vapor blanket. In fact, since the bubble inflation
is so rapid and causes such a large relative change in volume, the time for lift-off
is only marginally larger than the time needed for first evaporation (see Figure 3a).
Hence, as a proxy for the lift-off time, one can simply solve the initial heat diffusion
problem (first regime) and find the time at which the latent heat is first removed from
the bottom boundary z = 0. Such an approach reduces the computational cost and
technical complexity of the problem since it avoids having to resolve the growth of
the vapor blanket. Following this proxy approach, the key parameter that determines
the lift-off time is the Nusselt number N, which is a measure of the ratio between heat
transfer at the boundary and heat conduction in the snack. We can further simplify
this proxy problem in order to derive an analytic formula for t∗ as a function of N.
We do this by integrating the heat equation from the bottom to the top of the crisp,
substituting in the Newton heating boundary conditions, then assuming the average
temperature in the crisp and the temperature at the top and bottom of the crisp are
all approximately equal. Doing this we recover an ODE for the temperature of the
crisp, which we can solve to recover

t∗(N) =
C

2NStK2
log (1− T ∗) .(3.3)

In the literature the Nusselt number for snacks varies between 0.3 and 1.3. Therefore,
in Figure 4 we plot the variation of approximate lift-off time with Nusselt number
calculated using the analytic formula, the proxy approach, and the full numerical
problem for t∗ such that ρ(t∗) < 1. The lift-off time is a monotone decreasing function
of N, as expected. In dimensional terms lift-off occurs for times between 0.5 and 2.6
seconds.

As a further motivation for our vapor blanket model, suppose instead we were
to ignore the vapor blanket and just solve the classic Stefan problem with Newton

Fig. 4. Variation of the nondimensional lift-off time with Nusselt number N, showing the
analytic times, the approximate times calculated by solving the proxy heat diffusion problem until first
evaporation, and the precise times calculated by solving the full numerical problem until ρ(t∗) < 1.
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PREDICTING LIFT-OFF TIME 585

heating boundary conditions (i.e., h = 0). In this case, we skip the second regime
since there is no bubble inflation and simply move from a heat diffusion regime to a
quasi-steady regime. From Figure 3a we see that the density decay in the quasi-steady
regime is much slower than that caused by bubble inflation. This results in a lift-off
time closer to t = 1, which in dimensional terms corresponds to more than 10 seconds,
and this is a factor of ten larger than experimental observations. Hence, this serves as
a good indication that our vapor blanket model is accurate and provides the essential
ingredients to predict the lift-off time during frying.

Motivated by the above simulations, we now consider a further limiting case of
the mathematical model called the quasi-steady limit. In this limit, we can further
simplify the governing equations and find some analytical results that provide useful
insight to the problem.

4. Quasi-steady limit. The quasi-steady limit corresponds to when the thermal
problem (2.28)–(2.30) becomes independent of time except through the motion of the
evaporation fronts. This limit, which is typical in such phase change problems, is a
result of the fact that the Stefan number is large [3, 12, 2]. In our case, St = O(10),
which, though not large in the absolute sense, is large enough for the purposes of
our asymptotic analysis, as the numerical results suggest. It is often the case that
an asymptotic result valid when a certain parameter is large is also valid beyond this
range. To study this limit, we restrict our attention to the second and third regimes
of the above simulations. That is to say, we replace the initial conditions at room
temperature (2.23) that we used previously with initial conditions at the evaporation
temperature T (t = 0) = 0. As before, we restrict our attention to the case where the
evaporation fronts move uniformly, such that s1, s2, and T1–T3 are independent of x
and y. Hence, the temperature in each region is given by

Ti = Ai(t)z +Bi(t)(4.1)

for some functions Ai, Bi, for i = 1 − 4. The thermal profiles (4.1) are consistent
with our numerical observations in Figure 2d, where the temperature is approximately
linear within each region.

Applying the boundary conditions (2.31)–(2.36), we obtain

T1 =
z − s1

1 + 1/N− s1
,(4.2)

T2 = 0,(4.3)

T3 =
s2 − z

1/N + h/K4 + s2

,(4.4)

ṡ1 =
−1

1 + 1/N− s1
,(4.5)

ṡ2 =
1

1/N + h/K4 + s2

.(4.6)

The last equation (4.6) contains the spatial average of the vapor blanket thickness,

h =
∫ 1

0
hdx, which is found by solving the thin-film equation

1

τ

∂h

∂t
=
β

3

∂

∂x

(
h3 ∂h

∂x

)
+

1

1/N + h/K4 + s2

,(4.7)
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586 BABB ET AL.

together with the boundary conditions h = 0 at x = 0, 1 from (2.40). We again note
that we expect the slope of h to be infinite at the edges to be consistent with the
requirement for a finite nonzero flux. We can solve (4.5) immediately, finding

(4.8) s1 =
1

N

(
1 + N−

√
1 + 2N2t

)
.

The form of (4.8) reveals the classic t1/2 similarity behavior that is discussed for Stefan
problems in the literature [19, 9]. The remaining unknowns h and s2 are found by
solving the coupled system (4.6)–(4.7). In Figure 5 we display the numerical solution
to this system, calculated using the method of lines, as before. We see a fast early
time growth of the evaporation front s2, causing a rapid inflation of the bubble over
a timescale of around t = 0.01. After this inflation period, the growth rate of s2 is
almost constant, and consequently the bubble shape reaches a steady state, which is
consistent with Figures 2 and 3.

To understand the apparent steady state, let us consider the evolution equation
for the lower evaporation front (4.6). It is not immediately obvious that (4.6) yields
a constant growth rate solution. However, the nondimensional conductivity ratio is
very small K4 ≈ 0.04, and s2 in Figure 5 is also very small, suggesting that perhaps
the variables s2 and h ought to be rescaled by K4 appropriately. Since, for the steady
state solution, we expect h to be independent of time but dependent on space, and
we expect the evaporation front to move at a linear growth rate, we seek a rescaling
of the form

s2 = Kc
4(a+ bt) +O(K2c

4 ),(4.9)

h = Kd
4H(x) +O(K2d

4 )(4.10)

for some unknown coefficients a, b, c, d > 0. By inserting the above into (4.6)–(4.7),
we can see that a steady state is only possible (to leading order) if we choose

d− 1 + c = 0,(4.11)

4d = c,(4.12)

which has solution c = 4/5 and d = 1/5. Taking the limit of small K4, the resulting
system of equations is

Fig. 5. Solution to the quasi-steady approximation. (a) Evolution of the thin film h at various
times. (b) Evolution of the lower evaporation front s2(t).
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PREDICTING LIFT-OFF TIME 587

b =
1

βH
,(4.13)

1

3

(
H3Hx

)
x

+
1

βH
= 0,(4.14)

where H =
∫ 1

0
H dx is the scaled average film thickness, which is a constant in the

steady state. We can solve (4.14) to give H in terms of its average value

(4.15) H =

(
6x(1− x)

Hβ

)1/4

,

where we notice that the slope of H is indeed infinite at x = 0, 1. H is found by
integrating (4.15), which gives

(4.16) H =

[
Γ(5/4)

Γ(3/4)

(
8π2

27β

)1/4
]4/5

,

where Γ is the Euler Gamma function. Note that the above is only valid for times

much smaller than t ≈ K
−4/5
4 ≈ 13. However, the snack frying process all takes place

within 0 ≤ t ≤ 1, so this is acceptable. Note also that the linear behavior of s2

with respect to time is different from the square root behavior of s1 observed in (4.8).
Hence, the vapor blanket completely changes evaporation at the lower boundary.

In Figure 6 we display a comparison of the results from the quasi-steady limit,
including the steady state, to the original numerical solution from Figures 2 and
3. For the comparison, we look at the long-time evolution of the film thickness,
the density, the evaporation fronts, and the temperature within the snack. We see
that in all cases there is close agreement between the numerical solution to the full
problem, the quasi-steady solution, and the steady state. There is a slight discrepancy
(∼5%) for the steady state solution to the thin film, and this can be explained by
the asymptotic approximation (4.10) and the fact that the Stefan number is not very
large. Indeed, the correction to the leading-order approximation in 1/St is O(1/St),
which is comparable to the magnitude of the discrepancy we see between the numerical
solution to the full problem and the quasi-steady result. This discrepancy could be
mitigated by going to higher-order terms in the asymptotic expansions.

There is also a slight disagreement (∼1%) between the early time density pre-
dictions of the numerical solution to the full problem and the quasi-steady solution.
This can be explained by the way in which we calculate the speed of the lower evap-
oration front ṡ2, which largely controls the density at early times via the inflation of
the vapor blanket. In the quasi-steady approximation we calculate the evaporation
front s2 using a numerical discretization scheme in time to solve (4.6), with time step
δt = 4 × 10−8, providing very smooth results. On the other hand, in the numerical
solution to the full problem, since we calculate the temperature using the enthalpy
method, which does not require tracking the position of the fronts, the evaporation
front is calculated by finding the grid point that separates liquid and gas phases.
Since the grid spacing is finite, this leads to nonsmooth step changes in s2 and spikes
in the time-derivative of s2, which we have attempted to smooth using a damping
method. Nevertheless, even with a time step δt = 4× 10−8, this produces inevitable
error associated with the inflation of the vapor blanket, and this is reflected in the
slight disagreement for the density prediction at early times.
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588 BABB ET AL.

Fig. 6. Long time results from the quasi-steady approximation. (a) Evolution of the thin film
h at various times, compared to the analytical solution for the steady state. (b) Density ρ(t) as a
function of time, indicating the lift-off density ρ = 1. (c) Evolution of the lower Stefan boundary

s2(t), compared to the analytical solution for the steady state ṡ2 = K
4/5
4 /H. (d) Temperature profiles

T (z, t) at different times between t = 0 and t = 1, indicating liquid and vapour regions.

Closer agreement can be attained with an even smaller spatial discretization,
but due to the explicit discretization method, this results in lengthy computation
times. Hence, interestingly the quasi-steady solution, though it only applies to an
asymptotic limit, is generally more accurate than the numerical solution to the full
problem. Since the critical time of interest is the lift-off time, which still shows close
agreement between these two approaches, we do not consider this discrepancy to be
very important.

Finally, in Figure 6 c,d we display a comparison of the predictions of the evapora-
tion fronts and the temperature. On a macroscopic level, there is very close agreement,
and in particular the steady state solution performs remarkably well. After a time
of t = 1, or 10 seconds in dimensional terms, nearly half the liquid in the snack has
evaporated and the density has dropped by a factor of around 2. The overall thick-
ness of the vapor blanket is nearly equal to the total width of the snack, which is also
consistent with experimental observations.

5. Conclusions. We considered a mathematical model of potato snack frying to
estimate the time at which the snack becomes less dense than the surrounding oil and
begins to float, also known as the lift-off time. To that end, we modeled the frying
process as a Stefan problem with two propagating evaporation fronts at which the liq-
uid in the dough evaporates, thereby decreasing the density of the snack. In addition,
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PREDICTING LIFT-OFF TIME 589

a key feature in our model is the presence of a vapor blanket that forms underneath
the snack as liquid evaporates. The moving evaporation fronts and the vapor blanket
were assumed to be the two main mechanisms for density reduction of the snack and,
therefore, its eventual lift-off. Numerical results of the full system, using the enthalpy
method, revealed that both of these mechanisms were indeed essential to predict a
physically realistic lift-off time of the order of one second.

Two simplifications to the model were presented which gave useful insights into
the frying process and reduced the computation time. Firstly, since the inflation of
the vapor blanket causes a significant decrease in the snack density over a very short
timescale, we demonstrated that the lift-off time could be well approximated by the
time for first evaporation instead. This calculation is computationally cheaper and less
technically complex since it avoids modeling the vapor blanket dynamics. Secondly,
due to the large Stefan number we considered a simplified quasi-steady model to
describe the late-time dynamics. Both numerical and analytical solutions to this
simplified model were presented, showing close agreement with solutions to the full
system. This quasi-steady approximation not only further reduces the computational
cost but also provides key insights such as the steady-state shape of the vapor blanket
at late times.

One of the key dimensionless parameters that emerged as part of our analysis
was the Nusselt number N, which is the ratio between heat transfer at the snack
boundary and heat conduction in the snack interior. We investigated how changing
this parameter affects the lift-off time of the snack, which is important for snack
manufacturers since changing the dough, for example, can alter the Nusselt number
via the material properties. Hence, knowledge of the dependence of the lift-off time
on N is useful in determining optimal cooking strategies.

To further improve the prediction of lift-off time, other forces on the snack could
be considered. These could include interfacial tension between the snack and its
substrate (the conveyor belt) as well as the peeling energy required to overcome the
dough elasticity. As a result, the orientation of the snack on the belt and indeed the
belt design and material could have a further impact on the lift-off time of the snack.
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