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Continuum Mechanics

1.1 Introduction
We will be studying how material properties vary in space and time e.g: density, temperature, pressure, etc.

We are making a continuum approximation and we will treat a material as having a continuous distribution

of mass. This will apply on scales much larger than a molecule.

Each point in space is ascribed different properties and is governed by physical principles. This is the conser-

vation of mass, momentum and energy.

1.2 Conservation of Mass
Beginning with the conservation of mass we will look at an example.

For a fluid, the conservation of mass is given as shown below. This is also known as the continuity equation.

∂ρ

∂t
+∇ · (ρu) = 0 (1.1)

The fluid velocity and density are functions of position and time as shown: u(x, t) and ρ(x, t).

If ρ is constant, it is an incompressible fluid i.e. ∇ · u = 0

If we consider a concentration of a substance like salt in water we can use:

∂C

∂t
+∇ · J = G−U (1.2)

• Concentration is C(x, t) [ ] (no dimension)

• Flux of Concentration J(x, t) [ms−1]

• Source of Concentration G(x, t) [s−1]

• Sink of Concentration U(x, t) [s−1]

Concentration is conserved unless there are some sources/sinks.

If we focus on the on the flux: J is often decomposed into advective and diffusive components:

J = QA +QD (1.3)

Diffusion → Molecular Diffusion or Brownian Motion

Advection → Another word for transported

Plotting in 1D

Consider 1D advection at velocity uı̂:

J = QA = Cuı̂ (1.4)

2



CHAPTER 1. CONTINUUM MECHANICS 3

In ACM30220 we saw the method of characteristics and we can draw the characteristic projections. We have

the PDE
∂C

∂t
+ u

∂C

∂x
= 0 (1.5)

This is known as the transport equation for constant speed u.

Now consider a diffusive flux with a constant diffusion coefficient Do:

J = QD = −Do
∂C

∂x
ı̂ (1.6)

The conservation of mass becomes the heat equation as shown below:

∂C

∂t
−Do

∂2C

∂x2
= 0 (1.7)

We can solve it in two cases:

• Infinite domain - Fourier Transform

• Finite domain - Separation of Variables

Example

Next consider the case J = uC ı̂−Do
∂C
∂x ı̂, so we have advection and diffusion

∂C

∂t
+ u

∂C

∂x
= D0

∂2C

∂x2
(1.8)

This is the advection-diffusion equation which is hard to solve analytically. General behaviour is shown below:
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1.3 Conservation of Momentum
Next looking at the conservation of momentum, we start with the Navier-Stokes equations. These are the

momentum equations for an incompressible fluid.

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · σ + F (1.9)

Rate of change of momentum = Forces applied

F = external force (per unit volume) [N/m3], e.g: gravity F = −ρgk̂
σ = stress tensor [N/m2]

In index notation this is σij which is an n× n matrix in n dimensions.

Aside about the Stress Tensor

Consider a fluid element. E.g. σyz= stress on the z-surface in the y direction

Let Si = σijnj , this is the stress acting on the surface with outward pointing normal n.

So for the cubic element the upper surface has n = (0, 0, 1).

∴ S = (σxz, σyz, σzz)

We require a few more steps to get to the Navier Stokes equations.

For a Newtonian fluid, stress σ is proportional to strain e:

σij = −pδij + 2µėij (1.10)
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ėij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.11)

This tensor ė is a symmetric rate-of-strain tensor that tells is how the fluid is deforming.

Exercise:

If we take the divergence:

∇ · σ = −∇p+ µ∇2u (1.12)

Then we have the Navier Stokes equations:

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∇2u− ρgk̂ (1.13)

ρ
Du

Dt
= −∇p+ µ∇2u− ρgk̂ (1.14)

The D
Dt is an advective derivative or a material derivative. This comes about because we are in an Eulerian

reference frame. An Eulerian reference frame is a stationary frame through which a fluid is moving.

1.4 Conservation of Energy
If we look at the temperature in a solid T (x, t), this satisfies the heat equation (conservation of energy):

ρcp
∂T

∂t
= ∇ · (k∇T ) (1.15)

• T= temperature [K]

• ρ = density [kg/m3]

• cp = specific heat capacity [J/ kg K]

• k = conductivity [J/m K s]

Each conservation law is a PDE. To complete the system we would require boundary and initial conditions.

1.5 Dimensional Analysis
It is often useful to reduce/remove the physical parameters in a problem. It makes it simpler and more general.

This is done by re-scaling dependant and independent variables.

Example: The heat equation

We have a domain D,
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and here ρ, cp, k are all constants. We have:

ρcpTt = k∇2T on D (1.16)

T = T1 on δD (1.17)

T = T0 at t = 0 (1.18)

This is a well defined problem but first we will remove dimensions. Taking L as the characteristic length scale.

An obvious choice would be to re-scale.

x = Lx̂ t = τ t̂ T = T0 + (T1 − T0)T̂ = T0 +∆T T̂ (1.19)

Now inserting this into the heat equation,

ρcp∆T

τ
T̂t̂ =

∆Tk

L2
∇̂2T̂ (1.20)

Rearranging this into,

T̂t̂ =
τk

ρcpL2
∇̂2T̂ (1.21)

This indicates that the characteristic timescale must be,

τ =
ρcpL

2

k
(1.22)

So now our PDE is

T̂t̂ = ∇̂2T̂ (1.23)

Now we must look at the initial and boundary conditions and non dimensionalise these.

T̂ =0 at t̂ = 0 (1.24)

T̂ =1 at δD̂ (1.25)

In summary:

T̂t̂ = ∇̂2T̂ (1.26)

T̂ = 0 at t̂ = 0 (1.27)

T̂ = 1 at δD̂ (1.28)

Now our problem has no parameters so we only need to solve once for all the parameter values. i.e. We can

use the same solution for a variety of materials.

Example: Heat Diffusion in a 1D Ice Sheet

Mathematically we have,

−k∂T
∂x

= Q at x = 0 (1.29)

Our heat problem is,
∂T

∂t
=

k

ρcp

∂2T

∂x2
= α

∂2T

∂x2
(1.30)
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where α = k
ρcp

is known as the thermal diffusivity [m2/s]. The boundary conditions:

−kTx =Q at x = 0 (1.31)

−kTx =0 at x = L (1.32)

T =T0 at t = 0 (1.33)

Now we pose the question, how long does it take to move the mean ice temperature from T0 to T1?

First we non-dimensionalise,

x = Lx̂ t = τ t̂ T = T0 + (T1 − T0)T̂ = T0 + θT̂ (1.34)

leaving the constants θ, τ undetermined for now. So our heat problem becomes,

θ

τ
T̂t̂ =

αθ

L2
T̂x̂x̂ (1.35)

−kθ
L

T̂x̂ = Q at x̂ = 0 (1.36)

−kθ
L

T̂x̂ = 0 at x̂ = 1 (1.37)

T̂ = 0 at t̂ = 0 (1.38)

How do we choose our unknown constants?

Let θ = LQ
k and τ = L2

α

T̂t̂ = T̂x̂x̂ (1.39)

−T̂x̂ = 1 at x̂ = 0 (1.40)

−T̂x̂ = 0 at x̂ = 1 (1.41)

T̂ = 0 at t̂ = 0 (1.42)

We could solve this using separation of variables for example and it would be general. Note sometimes it is

not possible to remove all the parameters of the problem. E.g. Consider the problem:

Tt = αTxx (1.43)

T = T1 at x = 0 (1.44)

T = T2 at x = L (1.45)

T = T0 at t = 0 (1.46)
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Here we can’t remove all the parameters because there are too many. If we choose,

T = T0 + (T1 − T0)T̂ then: T̂ =
T2 − T0
T1 − T0

at x̂ = 1 (1.47)

We will end up with one dimensionless parameter λ = T2−T0

T1−T0
(or something equivalent). It is still solvable but

no longer generalised. If the parameter λ changes, a new solution needs to be calculated.

1.6 Scaling Arguments
Dimensional scaling arguments can be a powerful tool to help gain insight and physical intuition without doing

a lot of maths. Revisiting our previous example:

∂T

∂t
= α

∂2T

∂x2
(1.48)

−∂T
∂x

=
Q

k
at x = 0 (1.49)

−∂T
∂x

= 0 at x = L (1.50)

T = T0 at t = 0 (1.51)

Now we need to consider what are the physical parameters. We can make a list.

• α [m2/s]

• η = Q
k [K/m] (Note: Q and k only appear as a fraction, so we write this as a new parameter η)

• L [m]

• T0 [K]

We asked the question how long does it take to increase the mean temperature from T0 → T1.

Consider ∆T = T1 − T0 [K]

We want a timescale τ [s] that depends on the other parameters of the problem, such that τ = τ(α, η, L,∆T ).

To form a scaling argument, we are going to look at all the dimensional parameters, and try to rearrange in

such a way to just get dimensions of seconds.

We have two routes to take:

1. τ = L2

α [s]

The problem here is, we want our timescale to predict something about ∆T . Here we have mo dependence on

temperature change, so this won’t work. Then we can try,

2. τ = L∆T
αη [s]

Now we have a characteristic timescale that links time with ∆T .

Claim: Approximate time to heat the ice by ∆T is

τ ≈ L∆T

αη
(1.52)
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To check this we can solve the problem.

∂T

∂t
= k

∂2T

∂x2
(1.53)

−∂T
∂x

=
Q

k
at x = 0 (1.54)

−∂T
∂x

= 0 at x = L (1.55)

T = T0 at t = 0 (1.56)

Integrating equation (1.55) from x = 0 to x = L gives,

∫ L

0

∂T

∂t
dx = α

[
∂T

∂x

]x=L

x=0

(1.57)

d

dt

∫ L

0

Tdx = α
Q

k
=

kQ

ρcpk
=

Q

ρcp
(1.58)

We want the mean temperature so we seek,

1

L

∫ L

0

Tdx = T (1.59)

So our equation (1.58) is:

L
dT

dt
=

Q

ρcp
(1.60)

T =
Q

ρcpL
t+ constant (1.61)

Using the initial condition T = T0 at t = 0, we find

T = T0 +
Q

ρcpL
t (1.62)

Now if we have T = T1

t =
ρcpL(T1 − T0)

Q
(1.63)

Thus our timescale is τ =
ρcpL∆T

Q

We predicted,

τ ≈ L∆T

αη
=
L∆T
k

ρcp

Q
k

=
ρcpL∆T

Q
(1.64)

So it matches!

In this case our scaling argument matches exactly but normally this wouldn’t happen. In general scaling

arguments give an approximate answer based on the size of the parameters. In this example we got lucky and

we managed to solve without any maths. Generally, one should always include a dimensionless pre-factor in

the scaling argument.

e.g. t = β

(
∆TρcpL

Q

)
(1.65)

Now β here is just a number, such as 1 or 7 or π/2.
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Another example

What if we have some arbitrary 3D shape and ask, what is its volume?

One can guess with the scaling argument:

V ∼ L3 or V = βL3 (1.66)

For example with a sphere V = 4π
3 L

3, where L is the radius and β is 4π
3 .



Water Waves

2.1 Introduction
We will first begin with the fundamentals and then we will move on to describe water. Consider the wave

equation in one dimension.
1

c2
∂2u

∂t2
− ∂2u

∂x2
= 0 (2.1)

So for a displacement, u(x, t), of a wire under tension T , and with density ρ we have a wave speed:

c =

(
T

ρ

)1/2

(2.2)

Then with Newton’s second law in the vertical direction (F = ma)

m = ρdx a =
∂2u

∂t2
(2.3)

The resultant force is:

F = T sin θ|x+dx − T sin θ|x (2.4)

sin θ =
du√

dx2 + du2
=

∂u
∂x√

1 +
(
∂u
∂x

)2 (2.5)

For small displacements we can approximate since ∂u
∂x ≪ 1 thus,

sin θ ≈ ∂u

∂x
(2.6)

11
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From Newton’s second law, we can derive our wave equation.

ρdx
∂2u

∂t2
= T

(
∂u

∂x
|x+dx − ∂u

∂x
|x
)

(2.7)

Dividing by dx and taking limdx→0:

ρ
∂2u

∂t2
= T

∂2u

∂x2
(2.8)

In previous modules, we showed the general solution to the wave equation is:

u(x, t) = f(x− ct) + g(x+ ct) (2.9)

To get f and g we need initial conditions:

u(x, 0) = u0(x) (2.10)

∂u

∂t
(x, 0) = v0(x) (2.11)

These leads us to d’Alembert’s solution.

u(x, t) =
1

2
(u0(x− ct) + u0(x+ ct)) +

1

2c

∫ x+ct

x−ct

v0(x
′)dx′ (2.12)

Example

Red is the initial conditions. D’Alembert’s solution tells us that u0(x + ct) is left travelling and u0(x − ct)

is right travelling. The solution is made up of two waves with half the initial amplitude. The splitting hints

towards conservation of energy (i.e. K.E. + P.E. = 0)

If we now consider E(t) =
∫∞
−∞

1
2ρ(ut)

2 + 1
2T (ux)

2dx. The first term here is the kinetic energy and the second

term is the potential energy which adds up to make the total energy.

We can show energy is conserved as:

dE

dt
=

∫ ∞

−∞
(ρututt + Tuxuxt)dt (2.13)
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We can sub in the wave equation for utt.

=

∫ ∞

−∞

(
ρut

(
T

ρ
uxx

)
+ Tuxuxt

)
dx (2.14)

= T

∫ ∞

−∞
(utuxx + uxuxt) dx (2.15)

= T

∫ ∞

−∞

∂

∂x
(utux) dx (2.16)

= T [utux]
∞
−∞ = 0 (2.17)

This has to be zero since the wave moves at a finite speed and the limits at ±∞ are always ahead of the wave.

ux, ut → 0 as x→ ±∞ (2.18)

Therefore energy is conserved: If E(0) = E0, then E(t) = E0 ∀t.

Example: Find E(t) for a plane wave

If we have a plane wave with solution,

u(x, t) = A sin (kx− ωt) (2.19)

We can check it satisfies the wave equation (2.1) if

−ω
2

c2
= −k2 → ω = ±kc (2.20)

We can calculate the kinetic energy.

K.E. =

∫
ρ

2
(ut)

2dx (2.21)

=
1

2
ρ

∫
(Aω cos (kx− ωt))

2
dx (2.22)

=
1

2

ρA2ω2

k

∫ π

−π

cos2(x′)dx′ (2.23)

Here we have chosen ±π since we are looking at one travelling wavefront (between x = π− ct and x = π+ ct).

Hence, using (2.20)

K.E. =
1

4
ρA2c2k (2.24)

Similarly for potential energy,

P.E. =

∫
1

2
T (Ak cos(kx− ωt))

2
dx =

1

2

TA2k2

k

∫ π

−π

cos2(x′)dx′ (2.25)

=
1

4
TA2k (2.26)

∴ Total Energy = E =
1

4
A2k

(
T + ρc2

)
=

1

2
A2kT (2.27)

where in the final step we have used (2.2).

2.2 Waves in Shallow Water
Now let’s consider wave energy in shallow water. Consider a thin layer of water with a pressure force applied

to the surface.
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Later we will use the pressure p = P (x, t) at the surface to represent a wave energy generator. We want to

show that the water surface satisfies the wave equation with a source term,

1

c2
∂2h

∂t2
− ∂2h

∂x2
=

1

ρg

∂2P

∂x2
(2.28)

where the shallow water wave speed satisfies c2 = gH.

To show this we will begin with the Euler Equations (Navier-Stokes equations with µ = 0)

∇ · u = 0 (2.29)

ρ
Du

Dt
=−∇p− ρgk̂ (2.30)

We can note our boundary conditions as,

D

Dt
(z − (h(x, t) +H)) = 0 on z = H + h(x, t) (2.31)

which is our kinematic boundary condition;

p = P (x, t) on z = H + h(x, t) (2.32)

which is our dynamic boundary condition, and

u · n = 0 on z = 0 (2.33)

which means the bottom surface (with normal n) is impermeable. Now we have our equations and boundary

conditions, we can non-dimensionalise according to the scalings:

x = Lx̂, (z, h) = H(ẑ, ĥ), (p, P ) = p0(p̂, P̂ ), u = Uû, w =Wŵ, t = τ t̂ (2.34)

Shallow water waves exist in the limit ϵ≪ 1, where ϵ = H
L is the aspect ratio.

We insert these values into our governing equations, beginning with the continuity equation (2.29),

∇ · u = 0 → U

L
ûx̂ +

W

H
ŵẑ = 0 (2.35)

We can set W = ϵU to reduce things to:

ûx̂ + ŵẑ = ∇̂ · û = 0 (2.36)
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Now we consider the momentum equation (2.30) in the x̂ direction.

ρ (ut + uux + wuz) =− px (2.37)

ρ

(
U

τ
ût̂ +

U2

L
ûûx̂ +

WU

H
ŵûẑ

)
=− p0

L
p̂x̂ (2.38)

ρ

(
U

τ
ût̂ +

U2

L
ûûx̂ +

U2

H

H

L
ŵûẑ

)
=− p0

L
p̂x̂ (2.39)

ρ

(
UL

τ
ût̂ + U2 (ûûx̂ + ŵûẑ)

)
=− p0p̂x̂ (2.40)

L

Uτ
ût̂ + ûûx̂ + ŵûẑ =− p0

ρU2
p̂x̂ (2.41)

This equation suggests we take two natural scales,

τ =
L

U
, p0 = ρU2 (2.42)

such that

ût̂ +
(
û · ∇̂

)
û = −p̂x̂ (2.43)

Now we focus on (2.30) in the z-direction,

ρ (wt + uwx + wwz) = −pz − ρg (2.44)

ρϵ
U2

L
(ŵt̂ + ûŵx̂ + ŵŵẑ) = ρ

U2

H
p̂ẑ − ρg (2.45)

Dividing by ρU2

H :

ϵ2 (ŵt̂ + ûŵx̂ + ŵŵẑ) =− p̂ẑ −
gH

U2
(2.46)

Which suggests the velocity scale U =
√
gH.

Hence, the z-momentum equation becomes:

ϵ2
(
ŵt̂ +

(
û · ∇̂

)
ŵ
)
= −p̂ẑ − 1 (2.47)

Taking the limit ϵ→ 0 we have the system of equations which are the dimensionless shallow water equations:

∇̂ · û =0 (2.48)

ût̂ +
(
û · ∇̂

)
û =− p̂x̂ (2.49)

0 =− p̂ẑ − 1 (2.50)

Now we non-dimensionalise the boundary conditions: The kinematic condition (2.31),

w − ht − uhx = 0 : z = H + h (2.51)

ϵU
(
ŵ − ĥt̂ − ûĥx̂

)
= 0 : ẑ = 1 + ĥ (2.52)

ŵ = ĥt̂ + ûĥx̂ = 0 : ẑ = 1 + ĥ (2.53)



CHAPTER 2. WATER WAVES 16

the dynamic condition (2.32),

p = P : z = H + h (2.54)

p̂ = P̂ : ẑ = 1 + ĥ (2.55)

and the impermeability condition (2.33),

w = 0 : z = 0 (2.56)

ŵ = 0 : ẑ = 0 (2.57)

Now that we have everything non-dimensionalised we can look at the simplest case.

Case 1: Resting water solution

Let P̂ (x̂, t̂) = 0. Our equations become:

∇̂ · û =0 (2.58)

ût̂ +
(
û · ∇̂

)
û =− p̂x (2.59)

0 = −p̂ẑ − 1 (2.60)

Our boundary conditions are:

ŵ = ĥt̂ + ûĥx̂ : ẑ = 1 + ĥ (2.61)

p̂ = 0 : ẑ = 1 + ĥ (2.62)

ŵ = 0 : ẑ = 0 (2.63)

Before jumping in and solving, we can first make an educated guess based on what we know.

Since there is no applied pressure P (x, t) = 0, we expect a resting water solution.

So we will try û = ŵ = 0, ĥ = 0

The continuity equation (2.58) is trivially satisfied. Meanwhile the conservation of momentum gives,

p̂x̂ = 0 → p̂ = p̂(ẑ) (2.64)

0 = −p̂ẑ − 1 (2.65)

This tells us that:

p̂(z) = −ẑ + C (2.66)

We double check our boundary conditions:

p̂ = 0 on ẑ = 1 + 0 (2.67)

Hence,

C = 1 (2.68)

→ p̂(ẑ) = 1− ẑ (2.69)

Case 2: Perturbation to resting water
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Now let’s take our resting water solution and add a small perturbation.

First we will need to recall asymptotic expansions. Let’s consider a small perturbation P̂ = ϵP̃ (x̂, t̂), where

ϵ = H
L ≪ 1.

Let’s expand in powers of ϵ, such that

û =0 + ϵũ+ ... (2.70)

ĥ =0 + ϵh̃+ ... (2.71)

p̂ =(1− ẑ) + ϵp̃+ ... (2.72)

where the first terms in the expansion are the resting water solution (zeroth order) and the next terms are the

“first order perturbation”.

Since the resting water solution already satisfies our equations, we focus on the first order perturbation terms.

Ignoring second order terms that are proportional to ϵ2 and higher powers, our governing equations are

ϵ∇̂ · ũ = 0 (2.73)

ϵũt̂ +�����
ϵ2 (ũ · ∇) ũ = −ϵp̃ẑ (2.74)

0 = �1− ϵp̃ẑ − �1 = −ϵp̃ẑ (2.75)

This gives us a perturbed system which we call the linearised equations.

∇̂ · ũ = 0 (2.76)

ũt̂ = −p̃x̂ (2.77)

0 = −p̃ẑ (2.78)

Now we need to do similar steps for the boundary conditions, starting with the kinematic condition,

ϵw̃ = ϵh̃t̂ +���ϵ2ũh̃x̂ : ẑ = 1 + ϵh̃ (2.79)

We take w̃(x̂, 1 + ϵh̃, t̂) and Taylor expand:

w̃
(
x̂, 1 + ϵh̃, t̂

)
≈ w̃(x̂, 1, t̂) + ϵh̃

∂w̃

∂ẑ
(x̂, 1, t̂) (2.80)

which gives us (at leading order):

w̃ = h̃t̂ : ẑ = 1 (2.81)

Meanwhile, the dynamic boundary condition becomes(
1− (1 + ϵh̃)

)
+ ϵp̃ = ϵP̃ : ẑ = 1 (2.82)

→ p̃ = P̃ + h̃ : ẑ = 1 (2.83)

We have again Taylor expanded and imposed at ẑ = 1.

Finally we have the impermeability condition:

w̃ = 0 : ẑ = 0 (2.84)
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From here, we can solve the system of equations and get the wave equation.

Thus integrating (2.78) and applying (2.83) :

p̃(x̂, ẑ, t̂) = P̃ (x̂, t̂) + h̃(x̂, t̂) (2.85)

This can now be inserted into (2.77)

ũt̂ = −P̃x̂ − h̃x̂ (2.86)

Next we can integrate equation (2.76) vertically (from ẑ = 0 to ẑ = 1)

∫ 1

0

ũx̂ + w̃ẑdẑ = 0 (2.87)∫ 1

0

ũx̂dẑ + [w̃]10 = 0 (2.88)∫ 1

0

ũx̂dẑ + h̃t̂ − 0 = 0 (2.89)

We can take the time derivative, ∫ 1

0

ũx̂t̂dẑ + h̃t̂t̂ = 0 (2.90)

Also we can use the x-derivative of equation (2.86) to substitute since

ũx̂t̂ = −P̃x̂x̂ − h̃x̂x̂ (2.91)

We can insert this into the integral, noting that these are all functions of x̂, t̂ only:

(
−P̃x̂x̂ − h̃x̂x̂

)∫ 1

0

dẑ + h̃t̂t̂ =0 (2.92)

−P̃x̂x̂ − h̃x̂x̂ + h̃t̂t̂ =0 (2.93)

Now we have a dimensionless wave equation with a source term.

Now we can re-dimensionalise,

h = Hĥ t =
L

U
t̂ x = Lx̂ P = ρU2P̂ (2.94)

where U =
√
gH. So we get

− L2

ρU2
Pxx − L2

H
hxx +

L2

U2H
htt = 0 (2.95)

Then we divide by gL2

U2 = L2

H to get,

−Pxx

ρg
− hxx +

1

gH
htt = 0 (2.96)

1

c2
htt − hxx =

Pxx

ρg
(2.97)

which is the linear wave equation with a source term and with c =
√
gH.



CHAPTER 2. WATER WAVES 19

2.3 Wave Energy
We can now ask, what is the energy of this wave? The wave has both kinetic and potential energy.

E(t) =
1

2

∫ ∞

−∞

(
ρ

(
∂h

∂t

)2

+ ρgH

(
∂h

∂x

)2
)
dx (2.98)

We can check the dimension of that:

[
ρ(ht)

2dx
]
=

[
kg

m3

m2

s2
m

]
=
[
kg s−2

]
(2.99)

This is energy per unit area.

In the practice problems, we show that

dE

dt
=

∫ ∞

−∞
HPxxhtdx (2.100)

So if P = 0, we are not applying any force and energy is conserved → E = E(0).

2.4 Periodic Waves
Starting now with the shallow water wave equation we had earlier:

1

c2
htt − hxx =

Pxx

ρg
(2.101)

Periodic waves (with frequency ω) would be of the form

P (x, t) = Re
(
P̂ (x)eiωt

)
h(x, t) = Re

(
ĥ(x)eiωt

)
(2.102)

where P̂ and ĥ are complex functions. We can insert it into the wave equation:

−ω
2

c2
ĥ(x)− ĥ′′(x) =

P̂ ′′(x)

ρg
(2.103)

As per usual we non-dimensionalise:

x =
c

ω
x̃ ĥ =

c

ω
h̃ P̂ = ρg

c

ω
P̃ (2.104)

−ω
2

c2
c

ω
h̃(x̃)− c

ω

ω2

c2
h̃′′(x̃) =

ρg c
ω

ω2

c2

ρg
P̃ ′′(x̃) (2.105)

h̃′′(x̃) + h̃(x̃) = −P̃ ′′(x̃) (2.106)

This equation can be solved using Green’s functions.

As a quick recap consider ODE’s of the form:

p2(x)y
′′(x) + p1(x)y

′(x) + p0(x)y(x) = S(x) (2.107)

If we let the two independent solutions to the homogeneous equations be u(x), v(x), then we can write general

solutions of the form:
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y(x) = a0u(x) + b0v(x) +

∫ x

0

G(x, x′)S(x′)dx′ (2.108)

G is our Green’s function,

G(x, x′) =
u(x′)v(x)− u(x)v(x′)

p2(x)W (x)
(2.109)

W (x) is the Wronskian and is given by:

W (x) = u(x)v′(x)− u′(x)v(x) (2.110)

If we consider the shallow water wave equation (2.106),

p2 = 1 p1 = 0 p0 = 1 S = −P ′′(x̃) (2.111)

So all we must do is solve the homogenous case:

h̃′′(x̃) + h̃(x̃) = 0 u = cos x̃ v = sin x̃ (2.112)

And hence our general solution is:

h̃(x̃) = a0 cos x̃+ b0 sin x̃+

∫ x̃

0

(cosx sin x̃− sinx cos x̃) (−P ′′(x)) dx (2.113)

Note our Wronskian is W = cos2(x) + sin2(x) = 1.

Remember h̃(x̃) is a complex function so a0, b0 ∈ C, so it is easier to rewrite in terms of complex exponentials.

u = eix̃ v = e−ix̃ (2.114)

h̃(x̃) = Aeix̃ +Be−ix̃ +
i

2

∫ x̃

0

P̃ ′′(x)
(
ei(x−x̃) − ei(x̃−x)

)
dx (2.115)

Note: Boundary conditions will determine A, B ∈ C

Example

We will construct a wave energy generator mathematically of the form

P =

P (x, t) : 0 ≤ x ≤ L,

0 : Otherwise
(2.116)

where P (x, t) will be chosen to harness all the energy of an incoming right travelling wave (such that there is

no wave for x > L).

We begin by noting that anything proportional to eix̃ has to be left travelling and anything proportional to

e−ix̃ is right travelling.

We have different regions:

For x̃ < 0 we know h̃ = Aeix̃ +Be−ix̃ from equation (2.115).

But since the wave is right travelling, this indicates A = 0.

For x̃ > L̃ = Lw
c (the dimensionless length of the generator) we have:

h̃ = Be−ix̃ +
i

2

∫ L

0

P̃ ′′(x)
(
ei(x̃−x) − ei(x−x̃)

)
dx = 0 (2.117)
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which must be zero because the wave vanishes to the right of the generator.

Let’s consider a pressure P̃ ′′(x) composed of Dirac δ distributions.

Let P̃ ′′(x) = αδ(x) + βδ(x− L) for α, β ∈ C.

For x̃ > L̃:

h̃(x̃) = Be−ix̃ +
i

2

(
α
(
ei(x̃−0) − ei(0−x̃)

)
+ β

(
ei(x̃−L̃) − ei(L̃−x̃)

))
= 0 (2.118)

Now our aim is to collect right and left travelling whilst setting h̃ = 0:

e−ix̃

(
B − i

2
α− iβeiL̃

2

)
+ eix̃

(
i

2
α+

i

2
βe−iL̃

)
= 0 (2.119)

The two waves must be zero independently:

Right → B − iα
2 − iβeiL̃

2 = 0

Left → iα
2 + iβe−iL̃

2 = 0

Thus : B = i
2α
(
1− e2iL̃

)
and β = −αeiL̃

Now we can get α,β in terms of B to tell us how the δ-distributions behave.

α =
2B

i(1− e2iL̃)
β =

−2BeiL̃

i(1− e2iL̃)
(2.120)

Plotting this we have:

The δ are opposite in direction but have the same amplitude of |α|. They are out of phase by an angle of L̃.

Here is an illusion of the pressure and its derivatives:
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2.5 2D Waves
Consider the 2D Wave equation.

∇2h− 1

c2
htt = − 1

ρg
∇2P (2.121)

We restrict our attention to monochromatic (single frequency ω) waves:

P =Re
(
P̂ (x, y)eiwt

)
(2.122)

h =Re
(

ˆh(x, y)eiwt
)

(2.123)

→∇2ĥ+
w2

c2
ĥ = −∇2P̂

ρg
(2.124)

We non dimensionalise as before,

∇̃2h̃+ h̃ = −∇̃2P̃ = S̃ (2.125)

This is the inhomogeneous Helmholtz equation which we will solve using Greens functions.

Consider the operator L =
(
∇2 + 1

)
i.e. Lu(x, y) = S(x, y)

We require G(x, y,X, Y ) such that LG(x, y,X, Y ) = δ(x−X)δ(y − Y )

Then we write the solution as :

u(x, y) =

∫ ∫
G(x, y,X, Y )S(X,Y )dXdY (2.126)

Lu(x, y) =
∫ ∫

LG(x, y,X, Y )S(X,Y )dXdY (2.127)

=

∫ ∫
δ(x−X)δ(y − Y )S(X,Y )dXdY (2.128)

= S(x, y) (2.129)

The Green’s function for the 2D Helmholtz equation is the Hankel function (0th order 1st kind).

G(x, y,X, Y ) =H
(1)
0 (|x−X|) (2.130)

=J0(|x−X|) + iY0(|x−X|) (2.131)

=Bessel J + Bessel Y (2.132)

Example:
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Let −∇̃2P̃ = S̃ = δ(x̃)δ(ỹ) which is a point at the origin.

h̃ =

∫ ∫
G(x̃, ỹ, X̃, Ỹ )δ(X̃)δ(Ỹ )dX̃dỸ (2.133)

= G(x̃, ỹ, 0, 0) (2.134)

h̃ = J0(|x̃|) + iY0(|x̃|) (2.135)

h̃ = J0(r̃) + iY0(r̃) (2.136)

(2.137)

The time-dependant solution is:

h = Re
( c
w
h̃
(rw
c

)
eiwt

)
h(r, t) =

c

w
Re
((
J0

(rw
c

)
+ iY0

(rw
c

))
eiwt

)
(2.138)

Exercise: Plot this as an animation to see the radially symmetric solution.

2.6 Wave-Body Interactions
Motivated by wave energy generators, let’s consider a floating body (e.g an ellipse shape) with a water wave

causing it to move up and down.

It has a centre of mass x = X(t) and surface S.

The equations of motion for the centre of mass are:

mẌ =
∑

Forces on body = −
∫ ∫

S

(p− pa) n̂dA−mgk̂ (2.139)

We have (p− pa) because on the upper surface p = pa since we only have atmospheric pressure there.
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Why is this a force from the fluid?

Pressure acts on the body in the normal direction.

If we draw an outward unit normal, the pressure force is −(p− pa)n̂.

Total force is integrated over the surface.

In the steady state (no waves), the position of the centre of mass is just at z = H.

In 2D coordinates (x,z), S is given by z = H − f(x) for some function of f .

In the fluid we have the Euler equations with u = 0.

0 = −∇p− ρgk̂ (2.140)

∂p

∂x
= 0 (2.141)

∂p

∂z
= −ρg (2.142)

Using the boundary condition p = pa at z = H we find,

p = pa − ρg(z −H) (2.143)

So on S: p = pa + ρgf(x). The equations of motion come from (2.139).

We can split the vector equation into:

mẌ =−
∫
ρgf(x)(n̂ · ı̂)dl (2.144)

mZ̈ =−
∫
ρgf(x)(n̂ · k̂)dl −mg (2.145)

where we are integrating over the arclength l, for which dl2 = dx2 + df2. Thus dl = (1 + f ′(x)2)1/2dx.

The normal vector n̂ = 1
(1+f ′(x)2)1/2

(
f ′(x)

−1

)
Thus equation (2.144) becomes

0 =

∫ L/2

−L/2

f(x)f ′(x)

(1 + f ′(x)2)
1/2

(
1 + f ′(x)2

)1/2
dx (2.146)

0 =[
1

2
f(x)2]

L/2
−L/2 (2.147)

which is true by the definition of f(x), since the edges of the body must be at zero depth.
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Also, using equation (2.145)

0 =

∫ L/2

−L/2

ρgf(x)dx−mg (2.148)

m =ρ

∫ L/2

−L/2

f(x)dx (2.149)

m =ρ(Volume) (2.150)

i.e. In the steady state the level of the body f(x) is set by the mass.

Now let’s consider a small vertical perturbation to this:

Let Z = Z0 + η(t) :
η

Z0
≪ 1 (2.151)

We insert into (2.145):

mη̈ = −
∫
S

(p− pa) n̂ · k̂dl −mg (2.152)

On the surface Z = H − f(x) + η(t):

p = pa − ρg (−f(x) + η(t)) + p̃(x, z, t) (2.153)

where p̃ is the perturbation to the pressure. Inserting this into (2.152) we get

mη̈ = −
∫ L/2

−L/2

(−ρg (−f + η) + p̂) (−dx)−mg (2.154)

= ρg

∫ L/2

−L/2

(f(x)− η(t)) dx+

∫ L/2

−L/2

p̃dx−mg (2.155)

mη̈ = −ρgLη +
∫ L/2

−L/2

p̃dx (2.156)

The term
∫ L/2

−L/2
p̃dx is often parameterised in terms of “added mass” ma and acceleration η̈

∫ L/2

−L/2

p̃dx = −maη̈ (2.157)

The equation becomes,

(m+ma) η̈ = ρgLη (2.158)

η̈ +
ρgL

m+ma
η =0 (2.159)

η̈ + ω2η = 0 (2.160)

We rename ω =
(

ρgL
m+ma

)1/2
as our natural frequency of the body. These equations show the use of simple

harmonic motion.

Consider the equations of motion for η:

mη̈ = −ρgLη +
∫ L/2

−L/2

p̃dx (2.161)

which can be compared to Newton’s 2nd law (ma = F ). The first term on the right hand side is the restorative
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force (i.e a spring F = −kx) and the last term is the pressure force due to the fluid acceleration.

In this, generally we need a model for the perturbed pressure p̃. Here we will use a simple scaling argument.

The dimensions of the integral are: [∫ L/2

−L/2

p̃dx

]
=

[
kg m

m s2

]
=

[
kg

s2

]
(2.162)

Whereas the other dimensions are:

[L] = [m] [ρ] = [kg/m3] [η̈] = [m/s2] [ρη̈L2] =

[
kg

s2

]
(2.163)

Hence we arrive at the following scaling argument:
∫ L/2

−L/2
p̃dx ∼ −ρL2η̈. Note m has dimensions mass per unit

length since we are in 2D.

We wrote:
∫ L/2

−L/2
p̃dx = −maη̈ ∼ −ρL2η̈

Hence we write ma = αρL2 for dimensionless constant α.

The ODE for η then is: (m+ma)η̈ + ρgLη = 0

Next let’s apply this problem to a rectangular floating body.

Rectangular Floating Body

The ODE in this case becomes:

η̈ + ω2η = 0 (2.164)

ω2 =
ρgL

m+ma
=

(
ρgL

ρLf0 + ραL2

)
=

(
g

f0 + αL

)
(2.165)

For slender bodies f0 ≪ αL and so ω =
(

g
αL

)1/2
Then ω is the natural frequency of the body and clearly

larger bodies oscillate more slowly.

Forcing from a Wave: Consider forcing from a wave of Amplitude F0 and frequency Ω.

We will consider the ODE:

(m+ma)η̈ = −ρgLη + F0 sinΩt (2.166)

η̈ = ω2η +G sinΩt (2.167)

G =
F0

m+ma
(2.168)

Case 1: Ω ̸= ω (Forcing frequency is not equal to the natural frequency of the body)

Homogeneous solution to the equation: η = A cosωt+B sinωt.

We use the particular solution: η = C sinΩt as the ansatz
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Then,

η̇ = ΩC cosΩt (2.169)

η̈ =− Ω2C sinΩt (2.170)

Putting these coefficients together:

−Ω2C + ω2C = G (2.171)

C
(
ω2 − Ω2

)
= G (2.172)

C =
G

ω2 − Ω2
(2.173)

The general solution can be written as:

η = A cosωt+B sinωt+
G

ω2 − Ω2
sinΩt (2.174)

Then for our initial condition, η(0) = η̇(0) = 0 we can show:

η(t) =
G

ω (ω sinΩt− Ωsinωt)
(2.175)

Case 2: ω = Ω (Forcing frequency = natural body frequency)

It would be expected that in this case the amplitude would grow.

η̈ + ω2η = G sinωt (2.176)

The homogeneous solution is η = A cosωt+B sinωt

The particular solution: if we try C sinωt or C cosωt then the equation will vanish and so instead we will try:

η(t) = Ct cosωt+Dt sinωt (2.177)

η̇(t) = C cosωt+D sinωt− Ctω sinωt+Dtω cosωt (2.178)

η̈(t) = −2Cω sinωt+ 2Dω cosωt+ Cω2t cosωt−Dω2t sinωt (2.179)

Hence, our ODE becomes

η̈ + ω2η = −2Cω sinωt+ 2Dω cosωt = G sinωt (2.180)

Hence, comparing coefficients we find

D = 0 C = − G

2ω
(2.181)

The general solution is then:

η(t) = A cosωt+B sinωt− G

2ω
t cosωt (2.182)

Since the last term in this equation is multiplied by t it is unbounded and will grow in amplitude with time.
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Solving for the coefficients with initial conditions η(0) = η̇(0) = 0.

η(t) = A cosωt+B sinωt− G

2ω
t cosωt (2.183)

η(0) = A = 0 (2.184)

η̇(t) = ωB cosωt− G

2ω
cosωt+

Gtω

2ω
sinωt (2.185)

η̇(0) = ωB
G

2ω
+ 0 = 0 → B =

G

2ω2
(2.186)

η(t) =
G

2ω2
(sinωt− ωt cosωt) (2.187)

In practice we want to damp the oscillations to extract the energy of the wave:

η̈ + νη̇ + ω2η = G sinωt (2.188)

In this equation ν is the damping coefficient [s−1]

Then the power generated (mνη̇) · η̇ = Force x Velocity

The energy generated over one period =
∫ T

0
mνη̇2dt



Ice and Glaciers

3.1 Melting/Solidification of Sea Ice
Consider the set up:

We consider the melting/freezing of sea ice that is floating in the form of a layer of uniform thickness h(t).

Mathematical Model

We begin with conservation of energy (the heat equation).

Given the temperature of sea/ice is T (z, t), we have

ρcp
∂T

∂t
= k

∂2T

∂z2
(3.1)

with the following constant physical parameters:

• ρ (density) [kg/m3]

• cp (specific heat capacity) [J/kg K]

• k (thermal conductivity) [J/mK s]

Since ρ, cp, κ are different for ice and water, we use subscript notation, where subscripts w and i refer to water

and ice, respectively. We also define the thermal diffusivities for each phase as:

αw =
kw

ρwcpw
[m2/s] αi =

ki
ρicpi

[m2/s] (3.2)

which is analogous to a diffusion coefficient for temperature (as discussed in the Introduction). Hence we will

write the heat equation in the form:

∂T

∂t
=

αi
∂2T
∂z2 : −h < z < 0

αw
∂2T
∂z2 : −∞ < z < −h

(3.3)

There are different types of boundary conditions we will consider:

1. −k ∂T
∂z = q: This describes the heat flux q [J/m2s]

• q = q0: This gives a prescribed heating/cooling.

• q = hc (Te − T ): This is Newton’s Law of heating/cooling, given an external temperature Te and a

heat transfer coefficient hc [J/Km2s].

29
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So in essence if T > Te → q < 0 (Cooling)

if T < Te → q > 0 (Heating)
(3.4)

2. We may also prescribe a temperature boundary condition of the form:

T = T0 (3.5)

3. Another possible boundary condition is the ‘Stefan condition’, which encapsulates phase change.

−ρiL
dh

dt
= −kw

∂T

∂z
|z=−h− + ki

∂T

∂z
|z=−h+

(3.6)

where L is the latent heat [J/kg] and we use the notation

z = −h+ ⇐⇒ z → −h from z > −h (3.7)

z = −h− ⇐⇒ z → −h from z < −h (3.8)

And in a more compact form:

−ρiLḣ = q− − q+ (3.9)

Hence, if q− > q+ =⇒ −ḣ > 0 =⇒ ḣ < 0 (ice melting)

This means the ice melts due to more heating from below than above.

So physically speaking, the Stefan condition imposes conservation of energy across the moving boundary.

A change in heat flow across the moving boundary induces a release or sink of latent heat which is the energy

(per unit mass), associated with a change of phase of matter.

The liquid loses energy as the crystals form and this energy is called latent heat.

Derivation of the Stefan condition

Consider the case of freezing (without loss of generality). Let R denote the region between two instances of

the moving front, z = f(t) and z = f(t+ dt), as shown below:

The negative heat energy required to convert a region R from a liquid to a solid is given by:

−ρiL(f(t)− f(t+ dt)) [J/m
2
] (3.10)
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This must be supplied by a difference in heat flux across R.

Consider the example illustrated below in which the ice is at constant (freezing) temperature T = Tm, whilst

it is being cooled by a temperature gradient in the water below.

Hence, we have ∂T
∂z = 0 in the ice region and ∂T

∂z > 0 in the water region. Taking limits from either side of the

interface, we have

−ki
∂T

∂z
|+ >− kw

∂T

∂z
|− (3.11)

q+ >q− (3.12)

We can create an energy balance:

−ρiL(f(t)− f(t+ dt)) = (q− − q+) dt < 0, (3.13)

which indicates that f(t+ dt) < f(t), and hence we have ice growth.

To derive the Stefan limit we divide by dt and take the limit dt→ 0:

ρiL
df

dt
= q− − q+ (3.14)

This gives (3.9) if we set f = −h. i.e. We have

ρiL
dh

dt
= [q]+− (3.15)

Initial Conditions

We also need initial conditions for the temperature T (x, t) and the ice thickness h(t).

e.g. T = Ti at t = 0, h(0) = 0 (3.16)

which corresponds with zero ice initially.

Example Let’s consider the freezing of ice during winter, where the upper surface is held at a constant

temperature below freezing, such that T = T0 < Tm at z = 0. The sea is assumed to be at the freezing

temperature Tm everywhere initially. Hence, the ice will begin to grow downwards (from zero thickness) due

to cooling from the top.

The boundary conditions at the interface are

ρiLḣ(t) = [q]+− : z = −h(t) (3.17)

T = Tm : z = −h(t) (3.18)
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We also impose the far field condition

T → Tm : z → −∞ (3.19)

We assume that the sea is initially at the freezing temperature Tm and grows from zero thickness, such that

our initial conditions are

T = Tm : t = 0, ∀z < 0, and h(0) = 0 (3.20)

We will start by non-dimensionalising,

T = Tm + (Tm − T0) T̂ (z, h) = H(ẑ, ĥ) t = τ t̂ (3.21)

Currently H and τ are unknown since we have no obvious choices. First we will work with the governing

equations:

(Tm − T0)

τ
T̂t̂ =


αi(Tm−T0)

H2 T̂ẑẑ − ĥ < ẑ < 0

αw(Tm−T0)
H2 T̂ẑẑ −∞ < ẑ < −ĥ

(3.22)

Our boundary conditions become:

T̂ =− 1 : ẑ = 0 (3.23)

T̂ =0 : ẑ = −ĥ (3.24)

T̂ → 0 : ẑ → −∞ (3.25)

whilst the Stefan condition is:

ρi
LH

τ
ĥ′(t̂) = −ki (Tm − T0)

H

∂T̂

∂ẑ
|+ +

kw (Tm − T0)

H

∂T

∂z
|− (3.26)

This suggests we should take

τ =
ρiLH

2

ki (Tm − T0)
(3.27)

so we can write our Stefan condition as:

−ĥ′(t̂) = −T̂ẑ|+ +
kw
ki
T̂ẑ|− (3.28)

Finally, our initial condition is

T̂ = ĥ = 0 at t̂ = 0 (3.29)

Writing our governing equations with the new τ :

ki (Tm − T0)

ρiLαi
T̂t̂ =

T̂ẑẑ : Ice

αw

αi
T̂ẑẑ : Water

(3.30)



CHAPTER 3. ICE AND GLACIERS 33

Since αi =
ki

ρicpi
, we find

St T̂t̂ =

T̂ẑẑ : Ice

αw

αi
T̂ẑẑ : Water

(3.31)

where the Stefan number St is defined as follows

St =
(Tm − T0)cpi

L
(3.32)

which measures the ratio between the applied heat and the latent heat.

We notice that the vertical length scale H is in fact not needed (notice how it has cancelled out everywhere).

Hence, we conclude that there is no natural length scale in this problem. An alternative version of this problem

has a non-zero initial ice thickness h(0) = H, in which case this would set the vertical length scale.

To begin solving, let’s start with the water region (−∞ < ẑ < −ĥ):

St T̂t̂ =
αw

αi
T̂ẑẑ (3.33)

T̂ = 0 : ẑ = −ĥ (3.34)

T̂ → 0 : ẑ → −∞ (3.35)

T̂ = 0 : t̂ = 0 (3.36)

Clearly the solution in the water region is simply T̂ = 0 everywhere.

We can now move onto the ice region (−ĥ < ẑ < 0):

St T̂t̂ = T̂ẑẑ (3.37)

T̂ = −1 : ẑ = 0 (3.38)

T̂ = 0 : ẑ = −ĥ(t̂) (3.39)

ĥ′(t̂) = −T̂ẑ|+ : ẑ = −ĥ(t̂) (3.40)

T̂ = 0 : t̂ = 0 (3.41)

ĥ(0) = 0 (3.42)

noting that −T̂ẑ|− = 0 because the temperature in the water region is constant (as shown above).

Since we have no natural length scale, this suggests a similarity solution of the form

T̂ (ẑ, t̂) = t̂af(η) where η =
ẑ

tb
for some a and b (3.43)

If we can find a solution of this form, we can reduce the problem to an ODE for the function f(η) rather than

a PDE for T̂ . In order to do so, we must remove all explicit dependence on x̂ and t̂ (by choosing a and b

appropriately) such that the problem only depends on the similarity variable η.

First, let’s look at the expressions for T̂t̂ and T̂ẑẑ:
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T̂ẑ =
∂

∂ẑ

(
t̂af

(
ẑ

t̂b

))
= t̂a−bf ′(η) (3.44)

T̂ẑẑ = t̂a−2bf ′′(η) (3.45)

T̂t̂ = at̂a−1f(η)− bt̂af ′(η)

(
ẑ

t̂b+1

)
(3.46)

= at̂a−1f(η)− bt̂a−1f ′(η)η (3.47)

Hence, the heat equation becomes:

St (af(η)− bηf ′(η)) t̂a−1 = t̂a−2bf ′′(η) (3.48)

To remove the dependence on t̂ (i.e. under the assumption of self-similarity (3.43)) we require:

a− 1 = a− 2b (3.49)

→ b =
1

2
(3.50)

The boundary condition (3.38) becomes:

t̂af(0) = −1 (3.51)

Again, there cannot be any t̂ dependence, so we must have: a = 0.

The boundary condition (3.39) at ẑ = −ĥ(t̂) has η = −ĥ(t̂)

t̂1/2
which must be a constant to avoid explicit time-

dependence in the solution. Hence, the moving boundary is located at η = −λ, where λ is an unknown

constant that we must find. In terms of space and time, this boundary is at ĥ(t̂) = λt̂1/2, indicating that the

ice grows like the square-root of time - something that be observed in reality. Hence, the boundary condition

(3.39) becomes

f(−λ) = 0 (3.52)

The Stefan condition becomes:

− 1

t1/2
f ′(−λ) = 1

2
λt−1/2 (3.53)

→ f ′(−λ) = −λ
2

(3.54)

The governing heat equation now takes the form

−1

2
St ηf ′(η) = f ′′(η) (3.55)

which can be integrated once to give

f ′(η) = Ae−St η2/4 (3.56)

for some constant A. If we integrate this again we get the error function:

f(η) = C erf

(
η

√
St

2

)
+D (3.57)

for some constants C,D.
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The error function erf(z) is defined as

erf(z) =
2√
π

∫ z

0

e−t2 dt (3.58)

and is associated with the cumulative probability distribution for a normal distribution. It asymptotes to

erf(z) → ±1 at z → ±∞ and satisfies erf(0) = 0:

The boundary condition (3.51) implies

D = −1 (3.59)

Meanwhile, (3.52) implies

C =
1

erf(−λ
√
St
2 )

(3.60)

This means our solution is :

f(η) =
erf
(
η
√
St
2

)
erf
(
−λ

√
St
2

) − 1 (3.61)

We still have to determine λ using the Stefan condition (3.54), which gives

√
St

2

erf ′
(
−λ

√
St
2

)
erf
(
−λ

√
St
2

) =
−λ
2

(3.62)

We can rearrange this to give the following transcendental equation for λ:

λ
√
π

2 St
erf

(
−λ

√
St

2

)
eλ

2St/4 = −1 (3.63)

which must be solved numerically.

Next we convert back to dimensional coordinates,

T = Tm + (Tm − T0) T̂ (3.64)

= Tm + (Tm − T0)

−1 +
erf
(
η
√
St
2

)
erf
(
−λ

√
St
2

)
 (3.65)

where

η =
ẑ

t̂1/2
=

z

H

(τ
t

)1/2
=

z

(αiSt t)1/2
(3.66)
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Hence, the solution for the temperature in the ice T (z, t) is given by

T (z, t) = T0 +
erf
(

z
2
√
αit

)
erf
(
−λ

√
St
2

) (3.67)

We can sketch our solution here:

Quasi Steady Solution Let us now consider the Stefan number again.

St =
cp∆T

L
=

Applied Heat

Latent Heat
(3.68)

For sea ice we may take typical parameter values as:

∆T = 10◦ [K] (3.69)

cpi = 2090 [J/kg K] (3.70)

cpw = 4184 [J/kg K] (3.71)

L = 3.36× 105 [J/kg] (3.72)

Hence, we find

St ≈ 10310

105
≈ 0.1 (3.73)

Therefore, for small temperature differences ∆T < 10◦ we may approximate the heat equation as

St T̂t̂ = T̂ẑẑ ≈ 0 (3.74)

i.e. The “curvature” of T̂ (2nd derivative in ẑ) becomes very small.

In this case, known as the quasi-steady limit, the problem becomes independent of time except through the

motion of the boundary ĥ(t̂). Hence, integrating (3.74) with respect to ẑ twice we get

T̂ = A(t̂) +B(t̂)ẑ (3.75)

for some functions A,B.

We follow the same example as before, except with a different boundary condition at the upper surface of the

ice. Specifically, we consider a Newton cooling boundary condition, which in dimensional form is given by

−ki
∂T

∂z
= hc(T − T0) : z = 0 (3.76)

for some constant heat transfer coefficient hc [J/m2 K s]. This indicates that the surface ice temperature is
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cooled towards an external temperature of T0.

Non-dimensionalising as before, we find

−ki
∆T

H
T̂ẑ = hc∆T

(
T̂ + 1

)
: ẑ = 0 (3.77)

This provides a natural length scale choice, H = ki

hc
, such that

−T̂ẑ = T̂ + 1 : z = 0 (3.78)

Meanwhile, the boundary condition at the moving interface is the same as before:

T̂ = 0 : ẑ = −ĥ(t̂) (3.79)

Hence, inserting (3.75) into the boundary conditions (3.78), (3.79), we find

B(t̂) =
−1

1 + ĥ(t̂)
A(t̂) =

−ĥ(t̂)
1 + ĥ(t̂)

(3.80)

The solution therefore is:

T̂ (ẑ, t̂) =
−1

1 + ĥ(t̂)

(
ĥ(t̂) + ẑ

)
(3.81)

To find ĥ(t̂) we use the Stefan condition:

ĥ′(t̂) = −T̂ẑ|+ : ẑ = −ĥ(t̂) (3.82)

ĥ′(t̂) =
1

1 + ĥ(t̂)
(3.83)

ĥ′ + ĥĥ′ = 1 (3.84)

ĥ+
1

2
ĥ2 = t̂+ C (3.85)

for some constant C. Using our initial conditions ĥ(0) = 0 we find that C = 0

Our solution for the ice thickness is then:

ĥ = −1 +
(
1 + 2t̂

)1/2
(3.86)

We note that a positve square root is chosen (as opposed to a negative one) because this must be consistent

with the initial conditions ĥ(0) = 0.

Finally converting back to dimensional coordinates, our dimensional solution for the temperature in the ice
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and the ice thickness is:

T (z, t) = Tm − (Tm − T0)

H + h(t)
(z + h(t)) (3.87)

h(t) =

(
−1 +

(
1 +

2t

τ

)1/2
)
H (3.88)

where the constants H and τ are given by

H =
ki
hc

τ =
ρiLH

2

kw (Tm − T0)
(3.89)

3.2 Glacier Dynamics
Over long timescales glaciers can be observed to flow like a viscous fluid (as illustrated in the sketch below),

whose horizontal length scale is around ∼100 - 1000 km, and whose vertical length scale is around ∼1 km.

We consider ice with constant density ρ and viscosity µ. To model the flow of such a glacier we will use

the “lubrication approximation” of the Navier-Stokes equations (see Appendix). The flow within this type

of approximation is long and thin assuming ϵ = H
L ≪ 1. The Reynolds number is Re = ρUL

µ and within a

lubrication approximation it is assumed Re ϵ2 ≪ 1.

Under the lubrication approximation, the governing equations for the ice (conservation of mass and momentum)

are:

∂u

∂x
+
∂w

∂z
= 0 Continuity Equation (3.90)

0 = −∂p
∂x

+ µ
∂2u

∂z2
x-momentum (3.91)

0 = −∂p
∂z

− ρg z-momentum (3.92)

which are to be solved in a region 0 ≤ z ≤ h(x, t), where h(x, t) is the ice thickness.
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The corresponding boundary conditions are:

p = pa : z = h(x, t) (Dynamic boundary condition) (3.93)

µ
∂u

∂z
= 0 : z = h(x, t) (Zero stress) (3.94)

w = ht + uhx − a : z = h(x, t) (Kinematic boundary condition) (3.95)

w = 0 : z = 0 (Impermeability of bedrock) (3.96)

µ
∂u

∂z
= µβu : z = 0 (Slip condition) (3.97)

Most of these we have seen before. A new constant term a [m/s] has been added to the kinematic condition to

represent the accumulation of snowfall (that turns to ice) on the upper surface of the glacier. A new boundary

condition called the Slip condition has been introduced at the base of the glacier with a parameter β [1/m]

known as the inverse slip length.

According to the ‘slip length model’, the velocity of the glacier at the base (z = 0) is not equal to zero as it

would be with a regular viscous fluid. In fact, the base of the glacier slips according to some friction relation.

We approximate this with (3.97), which assumes that the velocity can be linearly extrapolated ‘below’ the

impermeable boundary at z = 0. We imagine that u = (βz + 1)u0 for z < 0, where u0 is the velocity at z = 0.

In this way, if extrapolated below z < 0, the velocity would reach zero at a negative length scale z = − 1
β .

Hence, we call 1/β [m] as the slip length, as illustrated below:

1/

Now we can begin solving our problem. We integrate (3.92) and use (3.93):

p = −ρg (z − h) + pa (3.98)

We then insert this into (3.91) to get

µ
∂2u

∂z2
= ρg

∂h

∂x
(3.99)

By integrating this twice we find

u =
1

2

ρg

µ

∂h

∂x
z2 + az + b (3.100)

where the constants a and b are found using (3.94) and (3.97). Hence, the velocity profile within the ice is

given by

u =
ρg

2µ

∂h

∂x

(
z2 − 2zh− 2h

β

)
(3.101)
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Integrating the continuity equation (3.90) from z = 0 to z = h(x, t), we get∫ h

0

ux + wzdx = 0 (3.102)∫ h

0

uxdx+ w|h0 = 0 (3.103)

Using the boundary conditions (3.95) and (3.96) and rearranging the integrals, we find

∂

∂x

∫ h

0

udz − u
∂h

∂x
|x=h + ht + u

∂h

∂x
|z=h − a = 0 (3.104)

→ ∂h

∂t
+

∂

∂x

∫ h

0

udz = a (3.105)

If we let Q =
∫ h

0
u dz represent the horizontal flux of ice [m2/s], the governing PDE can be written as

∂h

∂t
+
∂Q

∂x
= a (3.106)

Note that the step between (3.103) and (3.104) uses the Leibniz rule for the differentiation of integrals with

varying limits.

Leibniz Rule Recap:

d

dx

(∫ a(x)

b(x)

f(x, t)dt

)
= f(x, a(x))a′(x)− f(x, b(x))b′(x) +

∫ a(x)

b(x)

∂

∂x
f(x, t)dt (3.107)

Next, we need to evaluate the flux Q =
∫ h

0
u dz. This is given by inserting the expression for the velocity

(3.101) into the integral, giving

Q = − ρg
3µ

∂h

∂x
h2
(
h+

3

β

)
(3.108)

Hence, the governing equation for shape of the glacier (3.106) becomes:

∂h

∂t
− ρg

3µ

∂

∂x

(
h2
(
h+

3

β

)
∂h

∂x

)
= a (3.109)

We now require boundary conditions and initial conditions for h(x, t). It is assumed that the glacier is

symmetric about the z axis and extends between x = −xn(t) and x = xn(t), where xn(t) represents the ‘nose’

of the glacier (i.e. it’s propogating front).

Even though (3.109) is only a second order PDE in x, we actually require 3 boundary conditions in x because

the nose position xn(t) is unknown. Also, we will only consider half of the total domain, 0 < x < xn(t), for

simplicity since the glacier is symmetric. The boundary conditions we impose are

Q = − ρg
3µ

∂h

∂x
h2
(
h+

3

β

)
= 0 : x = 0 (3.110)

Q = − ρg
3µ

∂h

∂x
h2
(
h+

3

β

)
= 0 : x = xn(t) (3.111)

h = 0 : x = xn(t) (3.112)

The first condition (3.110) is a consequence of symmetry, the second (3.111) imposes that no ice is added or

removed from the edges of the glacier, and the third (3.112) imposes that the ice thickness is zero at the nose.
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As initial conditions, we take some initial shape h0(x), such that

h(x, 0) = h0(x) at t = 0 (3.113)

For the rest of this analysis, we will restrict our attention to the case where a = 0 (no snowfall), in which the

PDE (3.109) can be integrated across the domain to give a statement of conservation of mass:

∫ xn(t)

0

h(x, t)dx = V0 (3.114)

where V0 is the total volume of ice (constant). The above condition can be used instead of one of the boundary

conditions, e.g. (3.110) or (3.111).

In this problem we have two distinct regimes, depending on the ratio between the ice sheet thickness h and

the characteristic length scale 3/β, which represents the relative order of magnitude of the different flux terms

in the governing PDE (3.109).

Case 1: h≫ 3
β “No slip driven”

In the case where the ice thickness h is much larger than the slip length, the flux (3.108) is approximated by

Q ≈ − ρg
3µ
h3hx (3.115)

In this case, the governing PDE for the glacier shape is

ht −
ρg

3µ

(
h3hx

)
x
= 0 (3.116)

We can show that if we replace the slip boundary condition (3.97) with a no slip boundary condition, u = 0 at

z = 0, and follow the derivation from the beginning we end up with the same result (3.116). Hence, we refer

to this case as the “no slip driven” case: the ice sheet is thick and dominated by friction as if it were not able

to move at the base.

We can non-dimensionalise as follows:

(x, h) = V
1/2
0 (x̂, ĥ), t =

µ

ρgV
1/2
0

t̂ (3.117)
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In this case, the governing equation and boundary conditions become:

ĥt̂ −
1

3

(
ĥ3ĥx̂

)
x̂
= 0 (3.118)

−1

3
ĥ3ĥx̂ = 0 : x̂ = 0 (3.119)

ĥ = 0 : x̂ = x̂n(t̂) (3.120)∫ x̂n

0

ĥ(x̂, t̂) dx̂ = 1 (3.121)

By seeking a similarity solution of the form

ĥ(x̂, t̂) = t̂af(η), η =
x̂

t̂b
(3.122)

we can show that self-similarity is only possible if we choose

a = −1/5, b = 1/5 (3.123)

Hence, the position of the nose is given by

x̂n(t̂) = ηnt̂
1/5 (3.124)

where ηn is a constant that must be found.

We may derive the governing ODE and boundary conditions

−1

5
(f(η) + f ′(η)η) =

1

3
(f(η)3f ′(η))′ (3.125)

−1

3
f(0)3f ′(0) = 0 (3.126)

f(ηn) = 0 (3.127)∫ ηn

0

f(η) dη = 1 (3.128)

This has a solution

f(η) =

(
9

10

(
η2n − η2

))1/3

(3.129)

The value of the constant ηn can be calculated numerically by inserting the above into (3.121), giving ηn ≈ 1.33.

Case 2: h≪ 3
β “Slip Driven”

In the case where the ice thickness h is much smaller than the slip length, the flux (3.108) is approximated by

Q ≈ − ρg

µβ
h2hx (3.130)

In this case, the governing PDE for the glacier shape is

ht −
ρg

µβ

(
h2hx

)
x
= 0 (3.131)

The PDE is clearly dominated by the term multiplied by the slip length. Hence, we refer to this case as the

“slip driven” case: the ice sheet is thin and acts as if it is slipping at the base

We non-dimensionalise exactly as before (3.117). Hence, the governing equation and boundary conditions
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become:

ĥt̂ −
1

B

(
ĥ2ĥx̂

)
x̂
= 0 (3.132)

− 1

B
ĥ2ĥx̂ = 0 : x̂ = 0 (3.133)

ĥ = 0 : x̂ = x̂n(t̂) (3.134)∫ x̂n

0

ĥ(x̂, t̂) dx̂ = 1 (3.135)

where B = βV
1/2
0 is a dimensionless parameter.

By seeking a similarity solution of the form

ĥ(x̂, t̂) = t̂af(η), η =
x̂

t̂b
(3.136)

we can show that self-similarity is only possible if we choose

a = −1/4, b = 1/4 (3.137)

Hence, the position of the nose is given by

x̂n(t̂) = ηnt̂
1/4 (3.138)

where ηn is a constant that must be found.

We may derive the governing ODE and boundary conditions

−1

4
(f(η) + f ′(η)η) =

1

B
(f(η)2f ′(η))′ (3.139)

− 1

B
f(0)2f ′(0) = 0 (3.140)

f(ηn) = 0 (3.141)∫ ηn

0

f(η) dη = 1 (3.142)

This has a solution

f(η) =

(
B

4

(
η2n − η2

))1/2

(3.143)

The value of the constant ηn can be calculated numerically by inserting the above into (3.135), giving ηn =

(8/π)1/2B−1/4.

Transition between cases Next we consider the time it takes to transition from Case 1 to Case 2, as

described above. We can use the similarity solution in Case 1 (for example) to predict the maximum thickness

of the glacier at x = 0:

ĥ(0, t̂) = t̂−1/5f(0) =

(
ρgV

1/2
0 t

µ

)−1/5

f(0) (3.144)

which must equal the dimensionless transition thickness

ĥ(0, t̂) =
3

βV
1/2
0

(3.145)

Hence, by equating (3.144) to (3.145) we find the time to transition

t∗ =
µV 2

0

ρg

(
βf(0)

3

)5

(3.146)
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where f(0) =
(

9η2
n

10

)1/3
. Below is an illustration of the transition between Case 1 at early times and Case 2 at

late times. Early and late times are defined as t≪ t∗ (or h≫ H∗) and t≫ t∗ (or h≪ H∗), where H∗ = 3/β

is the transition thickness.

3.3 Plastic Model for an Ice Sheet
For a Newtonian fluid, stress is proportional to the rate-of-strain (1.10). In reality ice is non-Newtonian, which

means that stress and rate-of-strain may have a more complicated relationship. In the following section we

will follow a common model for ice sheets in which the ice is treated as a ‘yield stress’ fluid undergoing ‘plastic’

deformations. The assumption is that the ice will not deform unless a critical stress τb is reached, and will

deform freely for any stress larger than this.

The ‘deviatoric’ part of the stress tensor τij is the part related to deformations of the fluid and is given by

τij = 2µėij (3.147)

where ėij is given by (1.11). Our model assumes that the modulus of the deviatoric stress vector at the base

of the glacier (z = 0) is always equal to the yield stress, such that

|τ | = τb, at z = 0 (3.148)

Also, since the fluid is assumed to have yielded according to this stress, we anticipate a steady state with no

time-dependence.

We will consider a 3D model for shallow ice flow under the lubrication approximation. In this 3D model the

ice sheet occupies a region 0 ≤ z ≤ h(x, y), as illustrated below.

Under the steady lubrication approximation, the governing equations for the flow of ice can be written as

0 = −∂p
∂x

+
∂

∂z
(τxz) (x-momentum) (3.149)

0 = −∂p
∂y

+
∂

∂z
(τyz) (y-momentum) (3.150)

0 = −∂p
∂z

− ρg (z-momentum) (3.151)
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The boundary conditions are:

p = pa : z = h(x, y) (Dynamic) (3.152)

τxz = τyz = 0 : z = h(x, y) (Zero stress) (3.153)

Integrating (3.151) and using (3.152),

p = pa + ρg (h(x, y)− z) (3.154)

Inserting this into (3.149),
∂

∂z
(τxz) = ρg

∂h

∂x
(3.155)

We now integrate this and use (3.153),

τxz = ρg
∂h

∂x
(z − h) (3.156)

In a similar procedure,

τyz = ρg
∂h

∂y
(z − h) (3.157)

Consider the stress vector at the base of the glacier,

τ = (τxz, τyz, τzz) = ρg (z − h)

(
∂h

∂x
,
∂h

∂y
, 0

)
(3.158)

Next we calculate the norm of this,

τ = |τ | = ρg|z − h|
(
h2x + h2y

)1/2
(3.159)

If we have constant basal friction (friction at the base) τb, we impose:

τ = τb : z = 0 (3.160)

This gives us,

h|∇h| = H0 (3.161)

where

H0 =
τb
ρg

(3.162)

is the vertical length scale of the glacier which is set by the balance between gravity and basal friction. We

write this more conveniently as ∣∣∣∣∇(h22
)∣∣∣∣ = H0 (3.163)

or, letting u = h2

2H0
, we get

u2x + u2y = 1 (3.164)

which is known as the “Eikonal equation”.

We wish to solve this using the method of characteristics where we have a non-linear first order PDE. Hence,

we will use Charpit’s equations (see ACM30220).

We write the PDE as a function F of the form

F (x, y, u, p, q) = 0 (3.165)
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where p = ux and q = uy. Hence, in the case of the Eikonal equation we have

F = p2 + q2 − 1 = 0 (3.166)

Charpits equations are given by

dx

ds
=
∂F

∂p
= 2p (3.167)

dy

ds
=
∂F

∂q
= 2q (3.168)

du

ds
= p

∂F

∂p
+ q

∂F

∂q
= 2(p2 + q2) = 2 (3.169)

dp

ds
= −∂F

∂x
− p

∂F

∂u
= 0 (3.170)

dq

ds
= −∂F

∂y
− q

∂F

∂u
= 0 (3.171)

The following ODE’s need some initial data. In our case, the initial data is given on the boundary ∂D of our

domain D. On the boundary, the ice is assumed to have zero thickness h = 0 since this is where it meets

the ocean and transforms into icebergs. Since u ∝ h2, this mean that u = 0 on the boundary too. We will

parameterise the boundary shape ∂D as some 2D curve (x0(r), y0(r)).

(x0(r), y0(r))

Along this curve, the initial data (when s = 0) is given by

x(s = 0) = x0(r) (3.172)

y(s = 0) = y0(r) (3.173)

u(s = 0) = u0(r) = 0 (3.174)

p(s = 0) = p0(r) (3.175)

q(s = 0) = q0(r) (3.176)

In addition to u0(r) = 0, it is assumed that x0(r) and y0(r) are known (i.e. given by the prescribed boundary),

whereas p0(r) and q0(r) are unknown and therefore need to be found. These are given by Charpit’s equations

for the initial data, which are

F (x0(r), y0(r), u0(r), p0(r), q0(r)) = 0 (3.177)

u′0(r) = x′0(r)p0(r) + y′0(r)q0(r) (3.178)

which provides 2 equations for 2 unknowns (p0(r) and q0(r)).
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Let’s look again at Charpit’s equations (3.167)-(3.171). The equations for p and q can be integrated directly:

dp

ds
= 0 =⇒ p = p0(r) (3.179)

dq

ds
= 0 =⇒ q = q0(r) (3.180)

The rest of Charpit’s equations can then be integrated to give

dx

ds
= 2p0(r) → x = 2p0(r)s+ x0(r) (3.181)

dy

ds
= 2q0(r) → y = 2q0(r)s+ y0(r) (3.182)

du

ds
= 2 → u = 2s (3.183)

We now have a parametric solution for x(r, s),y(r, s),u(r, s). However, to get our final solution in terms of x

and y we need to invert by finding r(x, y) and s(x, y).

Example: Ice build-up near a crevasse: Let us now consider a specific example where we determine the

thickness of ice near a crevasse. The crevasse is located along the x axis, along which the ice has zero thickness,

such that h = u = 0 for y = 0. We can parameterise the initial data curve using a real-valued parameter

r ∈ R, such that

x0(r) = r (3.184)

y0(r) = 0 (3.185)

u0(r) = 0 (3.186)

Meanwhile, the equations for the initial data for p and q (3.177)-(3.178) give us,

p0(r)
2 + q0(r)

2 − 1 = 0 (3.187)

p0(r) = 0 (3.188)

From these, we find

q0(r) = ±1 and p0(r) = 0 (3.189)

The two possible values of q0(r) indicate that there are multiple possible solutions to our PDE (which is a

common feature of the Eikonal equation).



CHAPTER 3. ICE AND GLACIERS 48

Our parametric solution is

x = r (3.190)

y = ±2s (3.191)

u = 2s (3.192)

Hence, the characteristics are straight vertical lines of the form y = ±2s for s ∈ R. In other words, information

flows away from the crevasse, towards the interior of the ice.

The solution is written simply as

u(x, y) = ±y (3.193)

Since u = h2/2H0 > 0 must be positive, we write our solution as

u(x, y) = |y| (3.194)

which is no longer multivalued. Converting this to an ice thickness, we get

h = (2H0|y|)1/2 (3.195)

Sketching this we have:

Note: For any boundary curve, the solution for the Eikonal equation u(x, y) has a geometric interpretation

which is the Euclidean distance to the boundary ∂D, since

u(x, y)2 = (x− x0(r))
2
+ (y − y0(r))

2
(3.196)

as illustrated below:
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This can be seen by inserting the expressions for x(r, s), y(r, s), u(r, s), (3.181)-(3.183), into (3.196) directly

and seeing that it is indeed satisfied:

u2 = 4s2 = (x− x0(r))
2
+ (y − y0(r))

2
= 4s2(p0(r)

2 + q0(r)
2) = 4s2 (3.197)



Porous Media

4.1 What is a porous medium?
A porous medium is one in which a fluid is distributed through the pore space between the grains of solid. For

example, porous materials include soil, sandstone, and sponge.

Fluids move through a porous medium according to Darcy’s Law:

u = −k
µ

(
∇p+ ρgk̂

)
(4.1)

where we use the following definitions

• Permeability k [m2]

• Viscosity µ [kg m−1 s−1]

• Density ρ [kg m−3]

• Darcy Velocity u [m s−1]

• Porosity ϕ [∼]

• Pressure p [kg m−1 s−2]

Note: Permeability is often related to the “pore size” d [m] according to some relation k ∝ d2.

We know that for an incompressible fluid ∇ · u = 0. Hence, Darcy’s Law in this case tells us

∇ · u = ∇ ·
(
−k
µ

(
∇p+ ρgk̂

))
= 0 (4.2)

Hence, if ρ, k, and µ are constants then we get Laplace’s equation for the pressure

∇2p = 0 (4.3)

4.2 Groundwater
In this section we will be studying how water resides in the ground. Let’s consider a landscape as depicted

below.

The water table is a region composed of soil saturated with water. Above the water table is a region of

unsaturated soil, which may contain a combination of water, soil and air. Water may reside above the ground

in the form of a river. The water table is typically bounded below by a layer of impermeable “bedrock”.

50
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We shall consider 2D scenarios using coordinates (x, z). Darcy’s law is accompanied by boundary conditions

of the form:

p = pa : z = h(x, t) (Dynamic boundary condition) (4.4)

w = uhx + ϕht : z = h(x, t) (Kinematic boundary condition) (4.5)

w = 0 : z = 0 (Impermeability condition) (4.6)

Next we non-dimensionalise according to some typical horizontal and vertical length scales, L and H, that

have a long-thin aspect ratio
H

L
= ϵ≪ 1 (4.7)

which is relevant for many groundwater problems.

We take the following scalings,

z = Hẑ, x = Lx̂, u = Uû, w =Wŵ, t = τ t̂, h = Hĥ, p = pa + P p̂, (4.8)

where U,W, τ and P are not yet known. Under these scalings, the continuity equation becomes

U

L
ûx̂ +

W

H
ŵẑ = 0 (4.9)

Choosing W = ϵU we then have,

ûx̂ + ŵẑ = 0 (4.10)

Looking at the x-component of Darcy’s law, we have

u = −k
µ

∂p

∂x
(4.11)

Uû = −k
µ

P

L

∂p̂

∂x̂
(4.12)

Therefore, choosing U = P/µL we get

û = −p̂x̂ (4.13)

Next, the z-component of Darcy’s law gives us

w = −k
µ

(
∂p

∂z
+ ρg

)
(4.14)

ϵUŵ = −k
µ

P

H

(
∂p̂

∂ẑ
+
ρHg

P

)
(4.15)

Let’s choose P = ρgH, such that

ϵ2ŵ = −p̂ẑ − 1 (4.16)
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Hence, in the limit ϵ→ 0, the pressure is hydrostatic, such that

p̂ẑ = −1 (4.17)

From the above choices of scalings, we can see that the natural velocity scale within the problem is

U =
kρgH

µL
= Kϵ (4.18)

where K = kρg
µ is known as the hydraulic conductivity [m/s].

Next let’s look at the boundary conditions. The dynamic boundary condition becomes

p̂ = 0 : ẑ = ĥ(x̂, t̂) (4.19)

whilst the kinematic condition is

ϵUŵ =
Hϕ

τ
ĥt̂ + ϵUûĥx̂ : : ẑ = ĥ(x̂, t̂). (4.20)

Choosing τ = ϕL
U , the kinematic condition simplifies to

ŵ = ĥt̂ + ûĥx̂ : ẑ = ĥ(x̂, t̂) (4.21)

Finally, the impermeability condition becomes

ŵ = 0 : ẑ = 0 (4.22)

Now let’s integrate equation (4.17) and use the boundary condition (4.19), giving us

p̂ = −ẑ + ĥ(x̂, t̂) (4.23)

Now we will insert this into equation (4.13) to give us the dimensionless velocity

û = −ĥx̂ (4.24)

Next, we integrate (4.10) from ẑ = 0 to ẑ = ĥ(x̂, t̂) to give

∫ ĥ

0

ux̂dẑ + [ŵ]
ĥ
0 = 0 (4.25)

Then, using the Leibniz Rule and applying the boundary conditions (4.21) and (4.22), we get

∂

∂x̂

∫ ĥ

0

ûdẑ − ĥx̂û|ẑ=ĥ +
(
ûĥx̂ + ĥt̂

)
|ẑ=ĥ − 0 = 0 (4.26)

After simplification, this gives us the following governing equation for the water table

ĥt̂ =
(
ĥĥx̂

)
x̂

(4.27)

which is known as the “Dupuit Approximation” for long-thin groundwater problems. This is a nonlinear

diffusion (heat) equation which is second order in x̂ and first order in t̂ so we will need two boundary conditions

and one initial condition.

Boundary Conditions A typical boundary condition we may consider is presecribing the water table at a
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given location

ĥ = ĥ0 : x̂ = x̂0 (4.28)

From (4.23) we see that imposing h is equivalent to imposing the pressure, such as from a reservoir. In fact,

the dimensionless water table can be related to a constant pressure boundary condition p0 according to

ĥ0 =
p0 − pa
ρgH

(4.29)

Another boundary condition we may consider is setting the flux Q at a given location. We can calculate the

dimensional flux (depth integrated horizontal velocity) as

∫ h

0

udz = UH

∫ ĥ

0

ûdẑ = −UHĥĥx̂ = Q (4.30)

Hence, an appropriate flux boundary condition is of the form

−ĥĥx̂ = Q̂ : x̂ = x̂0 (4.31)

where the dimensionless flux is Q̂ = Q
UH

Finally we need some initial conditions, which are of the form

ĥ(x̂, 0) = ĥi(x̂) (4.32)

for some initial water table shape ĥi(x̂).

Steady State

After a long time we expect the water table to reach an equilibrium, such that ∂ĥ
∂t̂

→ 0. In this case, we can

integrate the governing equation (4.27) and apply the boundary condition (4.31) to get

ĥ(x̂)ĥ′(x̂) = −Q̂ (4.33)

Hence, the steady state has constant flux for all values of x̂. Integrating once more yields

1

2
ĥ2 = −Q̂x̂+ C (4.34)

for some constant C. Hence, applying the boundary condition (4.28) we get

ĥ =
(
ĥ20 − 2Q̂x̂

)1/2
(4.35)

taking the positive square root since we require ĥ > 0. The above water table has ĥ = h0 at x̂0 = 0 and ĥ = 0

at x̂ =
ĥ2
0

2Q̂
. This indicates that the water table can only exist for a finite interval before vanishing at a seepage

face, for example.

The dimensional version of the water table is then:

h(x) = H

(
h20
H2

− 2Q

ϵκH

x

L

)1/2

(4.36)

=

(
h20 −

2Q

κ
x

)1/2

(4.37)

We can see that the scalings H and L were not needed in the end since they are not present anywhere in the

solution. In dimensional terms, the water table vanishes (h = 0) at x =
Kh2

0

2Q , which is illustrated below.
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We also note that a negative slope in the water table corresponds with a positive flow direction, since

−ĥĥx̂ = Q̂ > 0 (4.38)

4.3 Aquifer Response to Rainfall
An aquifer is a porous underground reservoir that contains groundwater. Let’s consider how an aquifer responds

to rainfall at a rate R [m/s], as illustrated below.

Here we will use the Dupuit approximation as before, assuming that the water table has a long-thin aspect

ratio h/L ≪ 1. However, we will now use a slightly modified kinematic boundary condition at z = h(x, t) to

account for rainfall reaching that water table according to

w = ϕht + uhx −R : z = h(x, t) (4.39)

We non-dimensionalise using the same scalings as before, such that

ŵ = ĥt̂ + ûĥx̂ − RL2

H2K
: ẑ = ĥ(x̂, t̂) (4.40)

Unlike before, we now have an obvious natural length scale H for the water table height, set by a balance

between rainfall and conductivity. As such we choose H =
(
R
K

)1/2
L, giving the simplified kinematic condition

ŵ = ĥt̂ + ûĥx̂ − 1 : ẑ = ĥ(x̂, t̂) (4.41)
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We integrate the continuity equation (4.10), using the Leibniz rule as before, but now this gives

∂

∂x

∫ ĥ

0

ûdẑ − ûĥx̂|ẑ=ĥ + [ŵ]
ĥ
0 = 0 (4.42)

∂

∂x

(
−ĥĥx̂

)
− ûĥx̂|ẑ=ĥ +

(
ĥt̂ + ûĥx̂

)
|ẑ=ĥ − 1 = 0 (4.43)

ĥt̂ =
(
ĥĥx̂

)
x̂
+ 1 (4.44)

Hence, (4.44) is the new governing equation for the water table and is accompanied by boundary conditions

ĥ = 0 : x̂ = 0 (4.45)

−ĥĥx̂ = 0 : x̂ = 1 (4.46)

The first of these corresponds with imposing atmospheric pressure at x̂ = 0, which is equivalent to an outflow

into a river, for example. The second boundary condition imposes that there is no horizontal flux into the

aquifer at x̂ = 1, which is equivalent with a flow divide at the edge of a drainage system, for example.

Next let’s look for a similarity solution of the form

ĥ(x̂, t̂) = t̂af(η) η =
x̂

t̂b
(4.47)

Using the chain rule, we find each of the following derivative expressions

ĥx̂ = t̂a−bf ′(η) (4.48)(
ĥĥx̂

)
x̂
= t̂2a−2b (f(η)f ′(η))

′
(4.49)

ĥt̂ = at̂a−1f(η)− bt̂af ′(η)
x̂

t̂b+1
(4.50)

ĥt̂ = t̂a−1 (af(η)− bηf ′(η)) (4.51)

Our governing PDE for ĥ then becomes

t̂a−1 (af − bηf ′) = t̂2a−2b (ff ′)
′
+ 1 (4.52)

We want this to be independent of time for a similarity solution to exist. Thus we impose

a− 1 = 2a− 2b = 0 (4.53)

which has a unique solution a = b = 1. Hence our self-similar water table is of the form

ĥ(x̂, t̂) = t̂f

(
x̂

t̂

)
(4.54)

and our ODE for f is

f − ηf ′ = (ff ′) + 1 (4.55)

The boundary conditions (4.45)-(4.46) then become

f(0) = 0 (4.56)

−f(t̂)f ′(t̂) = 0 (4.57)

The final boundary condition is not compatible with self-similarity since it clearly depends on time explicitly.

Hence, we restrict our attention to the late-time solution t̂ → ∞, and replace this with the approximate
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boundary condition

−ff ′ → 0 : η → ∞ (4.58)

Alternatively, according to the governing equation for f (4.55), we see that (4.58) is equivalent to imposing

that

f → 1 : η → ∞ (4.59)

The governing equation (4.55) with boundary conditions (4.56) and (4.59) must be solved numerically, using

finite difference for example. A sketch is illustrated below.

Calculating the drainage flux into the river:

A useful output from this model is the drainage flux into the river, which is important for applications to

flooding and water management. The flux into the river at x̂ = 0 is given in dimensionless terms as

Q̂0 = −ĥĥx̂ at x̂ = 0 (4.60)

To evaluate this flux, we will consider the approximate behaviour of our similarity solution near η ≈ 0. The

terms on the left hand side of (4.55) correspond with the time derivative of the water table, and therefore

must tend to zero near x̂ ≈ 0 since the water table is ĥ ≈ 0 there. Hence, the dominant behaviour of (4.55)

near η ≈ 0 is

(ff ′)
′ ≈ 0 (4.61)

After integrating this twice and imposing the boundary condition (4.56) we get

f2 = C2η (4.62)

for some constant C, indicating that there is a square-root singularity near the origin. This is because we are

trying to force a finite flow through an infinitely small water table near the outlet. Hence, the flux behaviour

near the outlet must be of the form

f(0)f ′(0) =
1

2
C2 (4.63)

Thus the flux into the river can be calculated as,

Q̂0 = −t̂f(0)f ′(0) = −C
2t̂

2
(4.64)

The constant C can be found from the numerical solution, for example.

Drought period
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Now let’s suppose that at some time the rainfall stops, R = 0. The governing equations are then,

ĥt̂ =
(
ĥĥx̂

)
x̂

(4.65)

ĥ = 0 : x̂ = 0 (4.66)

−ĥĥx̂ = 0 : x̂ = 1 (4.67)

ĥ = ĥ0(x̂) : t̂ = 0 (4.68)

Let’s look for a separable solution of the form

ĥ = X(x̂)T (t̂) (4.69)

Inserting this ansatz into the governing PDE (4.65), we get

XT ′ =
(
X ′2)T 2 +XX ′′T 2 (4.70)

Then, dividing both sides by T 2X, we find an equation

T ′

T 2
=
X ′2

X
+X ′′ = B (4.71)

whose left hand side depends only on time and whose right hand side depends only on space, and therefore

must equal a constant B.

The time-dependent part of the solution must therefore satisfy the ODE

T ′ = BT 2 (4.72)

Since we expect the water table to shrink over time (i.e. because the rainfall has stopped), we expect T ′ < 0

and hence this suggests, B = −λ2 < 0 for some real constant λ. The above ODE can then be integrated to

give

T (t̂) =
1

λ2
(
t̂+A

) (4.73)

where the constant A is a constant time scale that is determined by the initial conditions.

Now let’s look at the X part of (4.71), which (after rearranging) is

X ′2 +XX ′′ + λ2X = 0 (4.74)

The boundary conditions (4.45) and (4.46) indicate that

X(0) = 0 (4.75)

X(1)X ′(1) = 0 (4.76)

We can eliminate λ by rescaling according to

X̂(x̂) = λ2X̃(x̂) (4.77)
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In this way, the governing equation and boundary conditions for X̃ are

X̃ ′2 + X̃X̃ ′′ + X̃ = 0 (4.78)

X̃(0) = 0 (4.79)

X̃ ′(1) = 0 (4.80)

where in the case of the ultimate boundary condition we have divided by a factor X̃(1) since this is assumed

non-zero. We can solve these equations numerically, using finite differences for example.

The solution is then given by:

ĥ(x̂, t̂) = X(x̂)T (t̂) (4.81)

= λ2X̃(x̃)
1

λ2
(
t̂+A

) (4.82)

=
X̃(x̃)

t̂+A
(4.83)

Hence, we see that the constant λ was not needed in the end since it does not appear in the solution. However,

there is still one undetermined constant A in the above expression. This is determined by the initial conditions

(4.32), which are assumed to be in the form:

ĥ(x̂, 0) = ĥi(x̂) =
X̃(x̃)

A
(4.84)

Hence, the constant A is set by the height of the water table initially.

Calculating the drainage flux into the river: Next, we shall calculate the drainage flux into the river for

the drought scenario, as we did before. In this case, the form of the drainage flux is

Q̂0 = −ĥĥx̂ : x̂ = 0 (4.85)

= −X̃(0)X̃ ′(0)(
t̂+A

)2 (4.86)

Consider the ODE (4.78) near x̂ ≈ 0. For similar reasons as before, the dominant behaviour of the ODE near

the origin must be (
X̃X̃ ′

)′
≈ 0 (4.87)

By integrating this twice and imposing the boundary condition (4.79) we get

X̃(0)X̃ ′(0) =
1

2
D2 (4.88)

for some constant D. Hence, the flux behaviour near the origin must be

Q̂0 = − D2

2
(
t̂+A

)2 (4.89)

The long-time behaviour of this is clearly

Q̂0 ≈ −D
2

2t̂2
: t̂≫ 1 (4.90)

and the constant D can be calculated from the numerical solution, for example.
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Now in summary, we have the following behaviours for the magnitude of the outflux into the river

During rainfall: |Q0| ∼ t (4.91)

During drought: |Q0| ∼
1

t2
(4.92)

which is illustrated in the sketch below. Around the time when the rainfall switches off, there will be some

transition behaviour that we have ignored because it is difficult to model.

4.4 Coastal Groundwater Management
Many dry coastal regions get their drinking water from porous aquifers. If too much water is extracted, the

seawater may intrude which corrupts the water supply.

How much can we extract without contaminating the aquifer?

The governing equations for the flow are the Darcy equations rotated by an angle α corresponding with the

slope of the bedrock. Hence, these are

ux + wz = 0 (Continuity) (4.93)

u = −k
µ
(px − ρg sinα) (Darcy x-component) (4.94)

w = −k
µ
(pz + ρg cosα) (Darcy z-component) (4.95)

where tanα = H
L = ϵ, and H and L are illustrated in the figure above.
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If we consider a very small slope then

tanα ≈ α ≈ ϵ (4.96)

sinα ≈ α ≈ ϵ (4.97)

cosα ≈ 1 (4.98)

Next we non-dimensionalise the problem, using similar scalings as before

x = Lx̂ z = Hẑ u = ϵKû w = ϵ2Kŵ p = pa + ρgHp̂ (4.99)

If we take the limit ϵ→ 0 the dimensionless governing equations become

ûx̂ + ŵẑ = 0 (4.100)

û = −p̂x̂ + 1 (4.101)

0 = −p̂ẑ − 1 (4.102)

We follow the same steps as in previous sections in order to find a governing equation for the water table at

ẑ = ĥ(x̂, t̂), which is

ĥt̂ +
(
ĥ
(
1− ĥx̂

)
x̂

)
= −Ŝ (4.103)

where the term −Ŝ(x̂, t̂) is much like the rainfall term in the previous problem, but here represents the

extraction of drinking water from the water table. As before, this term originates from the kinematic boundary

condition at the water table, such that

ŵ = ĥt̂ + ûĥx̂ + Ŝ : ẑ = ĥ(x̂, t̂) (4.104)

where Ŝ = S(x, t)/ϵ2K is assumed to vary with space and time.

The governing equation for the water table (4.103) is accompanied by boundary conditions of the form

ĥ
(
1− ĥx̂

)
= Q̂ : x̂ = 0 (4.105)

ĥ = Ĥb : x̂ = 1 (4.106)

where the first condition imposes a seepage flux Q̂ = Q
ϵKH from an upstream reservoir, and the second condition

represents imposing atmospheric pressure at sea level, where Ĥb = Hb

H is the dimensionless height of the sea

above the bedrock at the outlet.

After a long time, we reach a steady state ĥt̂ → 0, such that the governing equation becomes(
ĥ
(
1− ĥx̂

))
x̂
= −Ŝ(x̂) (4.107)

This can be integrated to give

ĥ
(
1− ĥx̂

)
= −

∫ x̂

0

Ŝ(X)dX + Q̂ (4.108)

If there is no extraction we can integrate the above equations to derive an implicit solution for the water table

of the form

ĥ− Ĥb + Q̂ log

(
ĥ− Q̂

Ĥb − Q̂

)
= x̂− 1. (4.109)
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Since we want to avoid sea water intrusion, we will impose the constraint that the dimensionless flux at the

outlet must be positive, such that

ĥ
(
1− ĥx̂

)
|x̂=1 > 0 (4.110)

=⇒ Q̂ >

∫ 1

0

Ŝ(X) dX (4.111)

This shows we need to extract a total amount of water that is less than the influx from the reservoir Q̂ (if we

want to avoid seawater intrusion in the steady state).

So far we have only modelled the position of the freshwater table in the reservoir. In addition we may also

need to model the interface between the freshwater and the seawater, as illustrated below. A simple model

for seawater intrusion assumes that the interface between freshwater and saltwater is ‘sharp’, i.e. there is no

mixing between the two bodies of water.

In this case we can use an Archimedes balance in the steady state to determine the position of the interface

between freshwater and saltwater. To do so, we let z = hf (x) represent the height of the fresh water table

above sea level, and z = −hs(x) represent the position of the saltwater interface below sea level. By equating

the hydrostatic pressure within each body of water at the interface, we find

ρf (hf + hs) = ρshs (4.112)

=⇒ hs = hf

(
ρf

ρs − ρf

)
(4.113)

This Archimedes balance is known as the “Ghyben-Herzberg Relationship”, and is only valid for steady state

water tables. Inserting real parameter values, we find
ρf

ρs−ρf
≈ 40, which indicates that for every 1 m of

freshwater above sea level, there is approximately 40 m of saltwater beneath sea level. This allows groundwater

engineers to manage coastal aquifers and prevent seawater intrusion.

In reality, saltwater tends to mix with freshwater, so we don’t have a sharp interface between these two regions.

Instead, we could model the concentration of salt in the aquifer with an advection-diffusion equation of the

form

Ct + (u · ∇)C = D0∇2C (4.114)

where D0 [m2/s] is the molecular diffusivity.

4.5 CO2 Sequestration
The overproduction of carbon dioxide emissions is one of biggest challenges facing humankind over the next

century. As outlined in the Paris Agreement (2015), it is necessary to limit global warming to less than 2

degrees C by the year 2100 to avoid the most dangerous consequences of climate change. To meet these
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temperature targets it is imperative to reduce our CO2 emissions quickly, and by as much as possible.

One of the few proposed technological solutions to this problem is carbon capture and storage (CCS) - that

is, capturing CO2 at source (e.g. power plants and factories) and injecting it into porous geological aquifers to

be sequestered (stored), either by dissolution or trapping in the rock pores and boundaries. One of the most

famous case studies of CO2 storage is the ongoing Sleipner Project in the Norwegian North Sea, storing 1MT

of CO2 each year since 1996.

In many cases, CO2 is injected into porous geological aquifers that are saturated with salty water. The CO2 is

typically injected several km beneath the ground beneath a ‘caprock seal’ - a layer of impermeable rock which

acts as a ceiling, preventing the buoyant CO2 from rising to the surface again.

In this section we will model the migration of CO2 beneath the caprock as a buoyant fluid (in fact it is in a

supercritical state i.e. indistinguishable between a gas or a liquid, due to high pressures). We will assume the

CO2 current is two-dimensional (for simplicity) and supplied by a constant injection rate Q [m2/s]. As such,

we will derive a governing PDE for the CO2 thickness h(x, t) beneath the caprock, as illustrated below.

The density of CO2, which we denote ρ1, is less than that of water, which we denote ρ2. Hence, the density

difference is

∆ρ = ρ2 − ρ1 > 0 (4.115)

We model the flow using Darcy equations in a long-thin limit, as before. The only difference is that we now

have two different densities. The z-component of Darcy’s equations in the shallow limit within the CO2 is

0 = −pz − ρ1g (4.116)
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whilst the dynamic boundary conditon at the CO2-water interface is

p = p0 + ρ2gh : z = −h(x, t) (4.117)

where p0 is the reference pressure of the brine at the caprock, i.e. at z = 0. By integrating the z-momentum

equation (4.116) and applying (4.117) we find an expression for the pressure in the CO2:

p = −ρ1g (z + h) + ρ2gh+ p0 (4.118)

Next we can insert this into the x-component of Darcy’s equations, which is

u = −k
µ
px = −Khx (4.119)

where K = k∆ρg
µ is the hydraulic conductivity. As per usual, we acquire the governing equation for h(x, t) by

integrating the continuity equation to obtain

ϕ
∂h

∂t
+

∂

∂x

∫ h

0

u dz = 0 (4.120)

Inserting (4.119) into the above, we obtain the governing PDE for the CO2 thickness:

ϕht = K (hhx)x (4.121)

Next we consider the boundary conditions for h(x, t), which extends between x = −xn(t) and x = xn(t) and

is assumed to be symmetric about the middle x = 0. Hence, for simplicity, we restrict our attention to half of

the current 0 ≤ x ≤ xn(t). At the origin we impose a constant input flux of CO2, such that

−Khhx = Q : x = 0 (4.122)

Meanwhile at the edge of the current, we impose that the current thickness is zero and that there is no added

flux of CO2, such that

h = 0 : x = xn(t) (4.123)

−Khhx = 0 : x = xn(t) (4.124)

Having described our governing equation and boundary conditions, next we will non-dimensionalise. If we
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look at our dimensional parameters,

Q [m2/s] K [m/s] (4.125)

we can see that a length scale is formed by L = Q
K [m]. So we choose the following scalings for our variables

x = Lx̂ h = Lĥ t =
ϕL

K
t̂ (4.126)

Thus our governing equation becomes

ĥt̂ =
(
ĥĥx̂

)
x̂

(4.127)

whilst the boundary conditions become

−ĥĥx̂ = 1 : x̂ = 0 (4.128)

ĥ = 0 : x̂ = x̂n(t̂) (4.129)

−ĥĥx̂ = 0 : x̂ = x̂n(t̂) (4.130)

In practice problems 4, we will show that it is possible to find similarity solutions of the form ĥ = t̂af
(

x̂
t̂b

)
for the above equation and boundary conditions.

4.6 Two-Phase Flow in Porous Media
In the problems we have looked at so far, we have assumed that the porous medium is fully saturated. For

example, in the groundwater problems we assumed that below the water table the soil contained water only,

and was devoid of air. Likewise, in the above model of a CO2 plume, we assumed the plume region was

composed purely of CO2 and the aquifer was otherwise purely saturated with brine.

A more realistic model accounts for the fact that two phases may exist in a given region at a given time. This

is true even if the two fluid phases are immiscible - that is to say that they do not mix together. Examples

of immiscible fluid pairs are CO2 and water, or water and air. When two immiscible phases occupy a porous

medium, we must account for the junctions that occur between fluid and solid boundaries. Consider the

diagram below, in which two immiscible fluid phases (A and B) are in contact with a solid phase beneath, e.g.

CO2, water, and sandstone.

Solid

The interface between fluid A and B makes an angle θ with the solid surface. This is known as the contact

angle, which is defined for a given combination of phases. There are some forces per unit length γ [N/m],

known as surface tension, acting on each of the 3 interfaces at the junction. We denote these γAS (between

fluid A and the solid), γBS (between fluid B and the solid), and γAB (between fluid A and fluid B). We assume
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that each of these surface tension parameters is a constant and obeys the following trigonometric force balance

γAB cos θ = γAS − γBS (4.131)

which is known as Young’s law. If each of the surface tensions γ is known, then Young’s law tells us the

contact angle θ. For two-phase flow (e.g. CO2 and water), is conventional to define a ‘wetting’ phase and a

‘non-wetting’ phase in terms of the contact angle. Specifically, if

0 < θ <
π

2
(4.132)

B is wetting (w) (4.133)

A is non wetting (n) (4.134)

whilst if

π

2
< θ < π (4.135)

B is non wetting (n) (4.136)

A is wetting (w) (4.137)

It is assumed that the pore space is occupied entirely by a combination of (w) and (n) phases. Hence, we

use notation Si (dimensionless) to define the fraction of pore space occupied by phase i, also known as the

‘saturation’. Hence, the sum of saturations satisfies

Sn + Sw = 1 (4.138)

A key feature of two-phase flow in porous media is that the flow of either phase depends on the saturation

of that phase. A good example of this is trying to pour water onto dry soil - the water usually runs off the

surface of the soil if it is too dry since it cannot penetrate through. By contrast, water poured onto wet soil

enters easily. Hence, we need to introduce the concept of ‘relative permeability’ for each phase, krw and krn.

Then, we model the permeability as k = k0kri(Si) for phase i, where kri is a dimensionless function of the

saturation. If the porous medium is fully saturated with phase i (i.e. Si = 1) then kri = 1, and hence we

retrieve the regular expression for permeability in single-phase flow in porous media, k = k0.

The diagram below illustrates two extreme cases of high and low saturations. The plot shows typical behaviour

of the relative permeabilities krw and krn as a function of non-wetting saturation Sn. These are typically non-

linear, monotone functions in the range [0,1].

Another consequence of surface tension is that the pressures of each phase are not equal. This is because some

energy is stored in the curvature of the interfaces between fluid phases. A simple example of this is shown

below, with two fluids occupying a ‘capillary tube’, e.g. as seen when taking a blood sample. The interface

between the two fluid phases is curved, due to the contact angle at the solid walls. This results in a pressure

difference

pn − pw = γκ (4.139)

where pn and pw are the pressures of each phase and κ [1/m] is the curvature of the interface. Because there is

a difference in pressure, this usually drives a flow of liquid up the tube at speed u. In medicine, this technique

is used to sample blood, by placing a thin tube on a drop of blood and using surface tension to drive it upwards.

In two-phase flow in porous medium, there are millions or billions of such junctions located in all the pores of
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the solid. Hence, we represent the macroscopic effect of surface tension using the following relationship

pn − pw = pc (Sn) (4.140)

where pc is known as the capillary pressure. Like relative permeability, the capillary pressure is also a function

of the phase saturation. This is typically monotone increasing from a value p0 towards infinity, as illustrated

in the figure below.

The pressure when there is no non-wetting phase is known as the ‘pore entry pressure’ and represents the
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minimum pressure required to get any non-wetting phase into the largest pores. As the pressure difference

increases towards infinity, the non-wetting phase can invade smaller and smaller pores, such that Sn tends

towards 1.

We represent the capillary pressure by the following relationship

pc (Sn) = p0ψ (Sn) (4.141)

where ψ(Sn) is a dimensionless function.

The governing equations for two-phase flow in porous media are known as the two-phase Darcy equations,

which are given by

ϕ
∂Sn

∂t
+∇ · un = 0 (Conservation of Mass (n)) (4.142)

ϕ
∂Sw

∂t
+∇ · uw = 0 (Conservation of Mass (w)) (4.143)

un = −k0krn(Sn)

µn
(∇pn + ρngk) (Darcy Momentum (n)) (4.144)

uw = −k0krw(Sn)

µw
(∇pw + ρwgk) (Darcy Momentum (w)) (4.145)

Sn + Sw = 1 (Pore Space Occupied) (4.146)

pn − pw = p0ψ(Sn) (Capillary Pressure) (4.147)

We note that:

• The last two equations allow us to eliminate either Sn and pn (and work with wetting phase only), or

Sw and pw (and work with non-wetting phase only) as required.

• Each phase has different properties, such as density (ρw, ρn) and viscosity (µw, µn).

• The permeability and porosity of the medium are k0 and ϕ, which are assumed to be constants.

• It is convention to write the relative permeabilities and the capillary pressure as functions of Sn without

loss of generality since Sn + Sw = 1.

4.7 Buckley-Leverett Flow

The most famous example of two-phase flow in porous media is known as Buckley-Leverett flow. This problem

concerns the displacement of one fluid by another in a long thin aquifer, for example CO2 (non-wetting)
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injected into a porous aquifer saturated with water (wetting). Since the flow is long and thin, we will treat

it as one-dimensional. Hence, we take our domain to be x ∈ [0, L], where L is the length of the aquifer (see

diagram above). The velocity vectors reduce to

un = un(x, t)ı̂ uw = uw(x, t)ı̂ (4.148)

The conservation of mass equations (4.142)-(4.143) in one dimension become

ϕ
∂Sn

∂t
+
∂un
∂x

= 0 (4.149)

ϕ
∂Sw

∂t
+
∂uw
∂x

= 0 (4.150)

Now if we add equations (4.149) and (4.150), using (4.146), we find

ϕ
∂

∂t
(Sn + 1− Sn) +

∂

∂x
(un + uw) = 0 (4.151)

Hence, we conclude that

un + uw = f(t) (4.152)

for some function of time f(t). We impose the boundary condition,

un + uw = u : x = 0 (4.153)

which corresponds with constant input flux of CO2 at the origin. Hence, due to (4.152)-(4.153), we find that

un + uw = u (4.154)

which applies for all time. Meanwhile Darcy’s equations in one dimension give

un = −k0krn(Sn)

µn

∂pn
∂x

(4.155)

uw = −k0krw(Sn)

µw

∂pw
∂x

(4.156)

However, we can eliminate the wetting pressure according to

pw = pn − p0ψ(Sn) (4.157)

Thus, we find

un + uw = −k0krn(Sn)

µn

∂pn
∂x

− k0krw(Sn)

µw

(
∂pn
∂x

− p0
∂ψ

∂x

)
(4.158)

= −k0krn(Sn)

µn

∂pn
∂x

− k0krw(Sn)

µw

(
∂pn
∂x

− p0ψ
′ (Sn)

∂Sn

∂x

)
= u (4.159)

where we have used the chain rule in the last step. Next, we collect the ∂pn

∂x terms together and rearrange,

finding

∂pn
∂x

= −
µwu
k0

Mkrn + krw
+

krwp0
Mkrn + krw

ψ′ ∂Sn

∂x
(4.160)
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where M = µw

µn
is the viscosity ratio. Next going back to equation (4.149) and subbing in (4.155), we find

ϕ
∂Sn

∂t
+

∂

∂x

(
−k0krn

µn

∂pn
∂x

)
= 0 (4.161)

Hence, inserting our expression for the pressure gradient (4.160), we find

ϕ
∂Sn

∂t
+

∂

∂x

(
u

Mkrn
Mkrn + krw

)
− ∂

∂x

(
k0p0
µw

Mkrnkrw
Mkrn + krw

ψ′ ∂Sn

∂x

)
= 0 (4.162)

We will now write this in the form

ϕ
∂Sn

∂t
+

∂

∂x
(J(Sn)) =

∂

∂x

(
D(Sn)

∂Sn

∂x

)
= 0 (4.163)

where we define the following functions

J(Sn) = u
Mkn

Mkn + krw
(4.164)

D(Sn) =
k0p0
µw

Mknkrw
Mkn + kw

ψ′ (Sn) (4.165)

The first of these is called the ‘flow rate fraction’ and represents the fraction of non-wetting flow to the total

flow, such that J ∈ [0, 1]. The second of these is a nonlinear diffusion coefficient which represents how capillary

pressure causes the saturation to get spread out. It is also useful to define the advection velocity

V (Sn) = J ′(Sn) (4.166)

such that the governing equation for Sn can be written as

ϕ
∂Sn

∂t
+ V (Sn)

∂Sn

∂x
=

∂

∂x

(
D(Sn)

∂Sn

∂x

)
(4.167)

This is an advection-diffusion equation, known as the Buckley-Leverett equation. We have seen similar such

equations before in this course, but now we have nonlinear advection and diffusion coefficients V and D that

depend on Sn.

To solve this, we first non dimensionalise according to the scalings

x = Lx̂ t = τ t̂ V = uV̂ D =
k0p0
µw

D̂ (4.168)

The governing equations then are:

ϕ

τ

∂Sn

∂t̂
+
u

L
V̂ (Sn)

∂Sn

∂x̂
=

k0p0
µwL2

∂

∂x̂

(
D̂(Sn)

∂Sn

∂x̂

)
(4.169)

If we choose an advective timescale τ = ϕL
u , then we get

∂Sn

∂t̂
+ V̂ (Sn)

∂Sn

∂x̂
=

1

Pe

∂

∂x̂

(
D̂(Sn)

∂Sn

∂x̂

)
(4.170)

Here we define the Peclet number Pe as

Pe =
uL
k0p0

µw

=
uL

α
, α =

k0p0
µw

(4.171)

where we have introduced a diffusivity α [m2/s] for comparison with previous advection-diffusion problems.
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For typical parameter values, for CO2 storage we find that Pe ≫ 1. Hence, advection typically dominates over

diffusion. We can therefore approximate equation (4.170) as

∂Sn

∂t̂
+ V̂ (Sn)

∂Sn

∂x̂
= 0 (4.172)

which is a nonlinear transport equation for Sn which we can solve using the method of characteristics. In

order to progress, we first need definitions for krn, krw in our expressions for J and V in (4.164) and (4.166).

A common model for kw and kn is the Corey model, which is given by

kn = S2
n kw = (1− Sn)

2
(4.173)

Under the Corey model, the dimensionless flow rate fraction and advection velocity are given by

Ĵ(Sn) =
Mkrn

Mkrn + krw
, V̂ =

d

dSn

(
Mkrn

Mkrn + krw

)
(4.174)

These functions are illustrated below for a moderate value of M .

Henceforth, we simplify our notation to use S for the non-wetting saturation Sn. Our governing dimensionless

PDE is then

Ŝt̂ + V̂ (S)Ŝx̂ = 0 (4.175)

To solve this we will use the characteristic equations, with characteristic parameter τ . The characteristic

equations are

dt̂

dτ
= 1

dx̂

dτ
= V̂ (S)

dS

dτ
= 0 (4.176)

which can be integrated to give

t̂ = τ + C1 x̂ = V̂ (S)τ + C2, S = C3 (4.177)

where C1-C3 are constants of integration. Hence, the characteristic projections are straight lines of the form

x̂ = V̂ (S)t̂+ const (4.178)

where the slope of these lines is V̂ (S).

We shall assume initial and boundary conditions of the form

S(0, t̂) = 1 : t̂ ≥ 0 (4.179)

S(x̂, 0) = 0 : x̂ > 0 (4.180)

The first imposes that we are inputting CO2 at the origin, whereas the second imposes that the aquifer is

initially saturated with water.
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Equation (4.177) tells us that saturation is constant along characteristics. This means that the saturation

profile at x̂ = 0 remains constant and is advected down the aquifer at speed V̂ (S). However, as shown in

the plot of V̂ (S) above, we see that the advection velocity is a non-monotone function of saturation with a

unique maximum in between S = 0 and S = 1. This means that intermediate values of S travel the fastest.

Hence, assuming that S is continuous for t̂ > 0, the initial conditions (4.179)-(4.180) indicate that S must

vary between 1 and 0 near the origin shortly after the initial time. Thereafter, saturation gets advected down

the aquifer with the non-monotone velocity V̂ (S), as depicted below.

However, there is a problem with this because the non-monotone velocity results in a multi-valued solution for

the saturation which does not make sense. Hence, we must introduce a discontinuity called a ‘shock’ at some

intermediate saturation value Ss. This shock corresponds with a crossing of the characteristics in the x̂ − t̂

plane, as shown above. The shock develops as the characteristics originating at t̂ = 0, x̂ > 0 (with velocity

V̂ (0) = 0) collide with the characteristics originating at x̂ = 0, t̂ > 0 (with velocity in the range V̂ (S) ≥ 0 for

S ∈ [0, 1]).

The corrected saturation profile with a discontinuous shock at intermediate saturation value Ss is shown below.
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We can ask, at what value Ss does the shock occur? The characteristic at the shock value travels along a line

x̂ = V̂ (Ss)t̂, which is therefore the dividing characteristic shown in the plot above.

To find the shock behaviour, we need to use the “Rankine-Hugoniot conditions” from the theory of discontin-

uous PDE’s (see appendix). For a PDE of the form

Pt +Qx = 0 (4.181)

the following condition must be satisfied across a shock:

dx

dt
=

[Q]+−
[P ]+−

(4.182)

which is known as the Rankine-Hugoniot condition for this PDE. This condition corresponds with imposing

mass conservation across a discontinuity in the solution.

In our case our PDE for S has P = S and Q = J , whilst the shock speed satisfies dx̂
dt̂

= V̂ (Ss). Hence, the

Rankine-Hugoniot condition is

V̂ (Ss) =
J(Ss)− J(0)

Ss − 0
(4.183)

which after rearranging gives

SsV̂ (Ss)− J(Ss) = 0 (4.184)

which is a nonlinear equation for Ss which must be solved with a numerical root-finder in general. As an

exercise you can show that Ss = (1 +M)
−1/2

in the case of the Corey Model.

Note that near the shock there are potentially very large gradients in the saturation. Hence, our assumption

of neglecting the diffusive term in (4.167) must be revisited (since it contains second derivatives of Sn). Hence,

the role of the diffusion becomes important again near the shock. The shock gets smoothed over a diffusive

boundary layer of width δ, which is a small length scales that grows in time. Whilst this is outside the scope

of this course, an illustration is shown below.



Batteries

5.1 Basic Idea
Sketch of a lithium ion battery.

• We consider the fundamental operation of a lithium ion battery (other types e.g. sodium are similar)

• Each electrode consists of a porous matrix of electrode particles (solid) and an electrolyte (liquid) con-

taining dissolved lithium ions.

• As the battery charges/discharges lithium ions leave particles in one electrode and transport to particles

in the other electrode.

• This transport of charge between the electrodes creates a potential difference (voltage) across the battery.

• There are many models of batteries, but we choose the simplest one called SPM (Single Particle Model).

• This chapter largely follows the paper by Xie, Y. and Cheng, X., 2021. A new solution to the spherical

particle surface concentration of lithium-ion battery electrodes. Electrochimica Acta, 399, p.139391.

5.2 Single Particle Model of a Battery
We will solve for a representative particle in each electrode which de-lithiates uniformly.

The concentration C of lithium (Li) ions in the spherical electrode particle only changes due to molecular

diffusion. Hence, the concentration satisfies the following (spherically symmetric) diffusion equation and

boundary conditions

∂Ck

∂t
=

1

r2
∂

∂r

(
r2Dk(Ck)

∂Ck

∂r

)
(5.1)

∂Ck

∂r
= 0 : r = 0 (5.2)

−Dk(Ck)
∂Ck

∂r
= jk(t) : r = Rk (5.3)

Ck = Ck0 : t = 0 (5.4)

Here the subscript k is either n (negative electrode) or p (positive electrode). The boundary conditons (5.2)

73
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and (5.3) indicate that the flux of lithium ions is zero at the centre and set by a surface flux density jk(t) at

the particle surface.

We have that,

• Ck is dimensionless

• Dk(Ck) is the non-constant diffusivity of lithium ions [m2/s]

• jk(t) is the surface flux density [m/s]

Key Idea

The voltage of a battery (as a function of time) depends on how the electrode particles de-lithiate.

V (t) = f (Cn(Rn, t), Cp(Rp, t)) (5.5)

Hence, we require a model for Ck(r, t) : k = n, p, which is given by the above PDE.

Example

Consider the case where Dn = Dp = D (constant), jn = jp = j0 (constant), Rn = Rp = R, and Cn0 = Cp0 = 0.

In this case our equations become

Ct =
D

r2
(
r2Cr

)
r

(5.6)

Cr = 0 : r = 0 (5.7)

−DCr = j0 : r = R (5.8)

C = 0 : t = 0 (5.9)

We will solve this using a Laplace transform by defining

L{C} = C(r, s) =
∫ ∞

0

C(r, t)e−stdt (5.10)

Given the definition of the Laplace transform, we note some immediately useful identities (obtained via inte-

gration by parts):

L{Ct} = −C(r, 0) + s C(r, s) (5.11)

L{1} =
1

s
(5.12)
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Hence our governing equation and boundary conditions become

s C = DCrr +
2D

r
Cr (5.13)

Cr = 0 : r = 0 (5.14)

−DCr =
j0
s

: r = R (5.15)

Now we define a new variable C̃ = rC, such that our governing equation becomes

C̃rr −
s

D
C̃ = 0 (5.16)

This can be integrated directly, giving the general solution

C(r, s) = A

r
e
√

s
D r +

B

r
e−

√
s
D r (5.17)

As an exercise you can show that using boundary conditions, the solution becomes:

C(r, s) = −j0R2

Drs

sinh (r
√

s
D )

R
√

s
D cosh (R

√
s
D )− sinh (R

√
s
D )

(5.18)

Now we need to invert the Laplace transformation. Recall that the inverse Laplace transform is given by

C(r, t) = L−1{C} =
1

2πi

∫ γ+i∞

γ−i∞
C(r, s)estds (5.19)

where γ ∈ R is to the right of all poles of C.

Additionally we have that: ∮
= lim

T→∞

∫ γ+iT

γ−iT

+
�
��
∫
Γ

= 2πi
∑

C

Res{C(r, s)est} (5.20)

where the integral over the contour Γ vanishes in the limit T → ∞ (Exercise: show this to be true).

Now considering the singular behaviour of f(s) = C(r, s)est, we have poles at

s = 0, and R

√
s

D
= tanh (R

√
s

D
) (5.21)

Let’s first consider the behaviour of f(s) near s ≈ 0.
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Recall (from Cauchy’s theorem) that for a pole of order n at s = s0, the ‘Residual’ is given by

Res{f, s0} = lim
s→s0

dn−1

dsn−1
((s− s0)

n
f(s)) (5.22)

Here s0 = 0 and n = 2. As an exercise in the Practice Problems, we will show that

lim
s→0

d

ds

(
s2f(s)

)
=

−3j0
R

(
t+

r2

6D
− R2

10D

)
(5.23)

Next we can take a look the pole where R
√

s
D = tanh (R

√
s
D ). We let s0 = −λ2D

R2 for some λ ∈ R, and we

note that

sinh (ix) = i sinx cosh (ix) = cosx (5.24)

Hence, we find that

C(r, s0) =
−j0R2

Drs0

i sin (λ r
R )

iλ cosλ− i sin (λ)
(5.25)

The above expression has poles when λ = tanλ. This has infinitely many roots, which we denote

λm ∈ R ≥ 0, m = 0, 1, 2, . . . (5.26)

The corresponding values of s are

sm = −λ
2
mD

R2
, m = 0, 1, 2, . . . (5.27)

Suppose C has poles of order 1 at λ = λm. We will consider,

Res{f, sn} = lim
s→sm
λ→λm

(
−j0R

2

Drs

sin (λ r
R )

λ cosλ− sinλ
(s− sm) est

)
(5.28)

Consider the Taylor expansion of the denominator near λ = λm, which is

λ cosλ− sinλ ≈ −λm (λ− λm) sinλm (5.29)
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Also note that,

(s− sm) = − D

R2

(
λ2 − λ2m

)
(5.30)

= − D

R2
(λ+ λm) (λ− λm) (5.31)

≈ −2D

R2
λm (λ− λm) (5.32)

Putting this all together we find

Res{f, sm} =
2j0R

2

Dr

sin (λm
r
R )

−λm (λ− λm) sinλm

(
−2D

R2
λm (λ− λm)

)
e−

λ2
mDt

R2 (5.33)

Now we will construct the whole solution,

C(r, t) =
−3j0
R

(
t+

r2

6D
− R2

10D

)
+

2j0R
2

Dr

∞∑
m=1

sin (λm
r
R )

λ2m sinλm
e

−λ2Dt

R2 (5.34)

The concentration at the surface r = R is:

Cs(t) = C(R, t) = −3j0t

R
− 1

5
j0
R

D
+

2j0R

D

∞∑
m=1

e
−λ2

mDt

R2

λ2m
(5.35)

To gain some intuition we write

Cs(t) = Cs1(t) + Cs2(t) (5.36)

where

Cs1(t) = −3j0t

R
(5.37)

Cs2(t) = −1

5
j0
R

D
+

2j0R

D

∞∑
m=1

e
−λ2

mDt

R2

λ2m
(5.38)

Here, Cs1 defines the average concentration inside a spherical particle. The voltage across the battery is a

function of Cs(t) in each of the positive and negative electrodes (5.5), which is how the charge and discharge

of a battery is modelled.

As a check, let’s confirm that our solution satisfies the appropriate initial conditions. We find that

Cs(0) = C(R, 0) = −1

5
j0
R

D
+

2j0R

D

∞∑
m=1

1

λ2m
(5.39)

We can use the following result to simplify things:

∞∑
m=1

1

λ2m
=

1

10
for λm = tanλm (5.40)

which we will not prove in this course, but can be easily tested numerically.

Hence our initial conditions are satisfied:

C(R, 0) = 0 (5.41)

Time Dependent Case
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Now suppose j0 = j(t) and consider:

J(s) := L{j(t)} =

∫ ∞

0

j(t)e−stdt (5.42)

Under this definition we can write the Laplace transform of the concentration as

C(r, s) = F (s)J(s) (5.43)

where

F (s) = −R2

Dr

sinh (r
√

s
D )

R
√

s
D cosh (R

√
r
R )− sinh (R

√
r
R )

(5.44)

Through the Convolution Theorem we have that the inverse Laplace transform satisfies

C(r, t) = L−1{F (s)J(s)} = (f ∗ j) (t) (5.45)

where ∗ represents a convolution. Hence, we write our concentration as

C(r, t) =

∫ t

0

f(r, τ)j(t− τ)dτ (5.46)

where f is the inverse Laplace transform of F . It is important to note that F has simple poles at s = 0 (order

1) and at s = sm, m = 0, 1, 2, . . ..

As an exercise you can show that near s ≈ 0 we have

F (s) ≈ − 3

Rs

(
1 +

(
r2

6D
− R2

10D

)
s

)
(5.47)

such that

lim
s→0

(
sF (s)est

)
= − 3

R
(5.48)

The poles at s = sm remain unchanged except for a factor sm = −λ2m D
R2 . Hence, we find that

C(r, t) =

∫ t

0

(
− 3

R
− 2

r

∞∑
m=1

sinλm
r
R

sinλm
e−

λ2
mDt

R2

)
j(t− τ)dτ (5.49)

By letting τ̃ = t− τ such that dτ̃ = −dτ , we can write∫ t

0

j(t− τ)dτ =

∫ 0

t

−j(τ̃)dτ̃ (5.50)

In this way, we can write our solution for the concentration as

C(r, t) = − 3

R

∫ t

0

j(τ̃)dτ̃ − 2

r

∫ t

0

( ∞∑
m=1

sin (λm
r
R )

sinλm
e−

λ2
mDτ

R2

)
j(t− τ)dτ (5.51)

Hence, the concentration at the surface is

Cs(t) = C(R, t) = Cs1(t) + Cs2(t) (5.52)
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where

Cs1(t) = − 3

R

∫ t

0

j(τ̃)dτ̃ (5.53)

Cs2(t) = − 2

R

∫ t

0

( ∞∑
m=1

e−
λ2
mDτ

R2

)
j(t− τ)dτ (5.54)

This gives us the corresponding version of the surface concentration of lithium ions when the imposed flux is

time-dependent.

Quasi Steady Limit: (A.K.A Fast diffusion)

Let’s now consider the case where the applied flux is varying at some frequency ω, such that j = j(wt). Our

governing equation and boundary conditions are written as

Ct =
D

r2
(
r2Cr

)
r

(5.55)

Cr = 0 : r = 0 (5.56)

−DCr = j(wt) : r = R (5.57)

C = C0 : t = 0 (5.58)

Next we will non-dimensionalise this problem according to the scalings

t =
1

w
t̂ r = Rr̂ C = C0ĉ j = j0ĵ (5.59)

As such, our equations become

ωR2

D
ĉt̂ =

1

r̂2
(
r̂2ĉr̂

)
r̂

(5.60)

ĉr̂ = 0 : r̂ = 0 (5.61)

−ĉr̂ =
j0R

DC0
ĵ(t̂) : r̂ = 1 (5.62)

ĉ = 1 : t̂ = 0 (5.63)

Next let’s consider the limit of large diffusion such that ωR2

D ≪ 1. In other words, we are considering the case

where the forcing timescale is much larger than the diffusion timescale, such that

1

ω
≫ R2

D
(5.64)

We will also assume that
j0

C0Rω
= O(1) (5.65)

is an order one quantity, such that the term on the right hand side of (5.62) is small, i.e.

Rj0
DC0

=
ωR2

D

j0
C0Rω

≪ 1 (5.66)

Hence, according to this regime, our governing system reduces to

1

r̂2
(
r̂2ĉr̂

)
r̂
≈ 0 (5.67)

ĉr̂ ≈ 0 : r̂ = 0, 1 (5.68)
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Our ‘leading order’ solution thus does not depend on r̂, and so we write

ĉ = ĉ0(t̂) (5.69)

for some unknown function ĉ0 which is yet to be found.

Next we will write our dimensionless concentration as an asymptotic expansion in terms of the small parameter

ϵ =
ωR2

D
≪ 1 (5.70)

As such, we write

ĉ = ĉ0 + ϵĉ1 + ϵ2ĉ2 + ... (5.71)

We insert this expansion into governing PDE, such that

ϵ
(
ĉ′0(t̂) + ϵĉ1(r̂, t̂) + ...

)
=

1

r2
(
r2
(
ĉ0(t̂) + ϵĉ1(r̂, t̂) + ...

))
r̂

(5.72)

We will now ignore terms of order O(ϵ2) in the above equation (i.e. we consider a ‘first order’ approximation).

This leaves us with

ĉ′0(t̂) =
1

r2
(
r2ĉ1r̂

)
r̂

(5.73)

Next we insert our asymptotic expansion into the boundary conditions, giving

ϵĉ1r̂ + ... = 0 : r̂ = 0 (5.74)

ϵĉ1r̂ + ϵ2ĉ2r̂ + ... = −ϵ j0
C0Rω

ĵ(t̂) : r̂ = 1 (5.75)

Hence, a first order approximation gives us the simplified boundary conditions

ĉ1r̂ = 0 : r̂ = 0 (5.76)

ĉ1r̂ = − j0
C0Rω

ĵ(t̂) : r̂ = 1 (5.77)

Now we will integrate equation (5.73) multiplied by r̂2 to get∫ 1

0

r̂2ĉ′0(t̂)dr̂ = [r̂2ĉ1r̂]
1
0 (5.78)

=⇒ 1

3
ĉ′0(t̂) = −

(
j0

C0Rω

)
ĵ(t̂) (5.79)

Converting this back to dimensional coordinates, we get

dc0
dt

= − 3

R
j(t) (5.80)

We can also write this as,

c0 = − 3

R

∫ t

0

j(τ)dτ (5.81)

which now finally determines our leading order solution for the concentration.

We can compare this with the time dependent solution (5.51) in the limit D → ∞, and we see that we get the

same result.
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