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Outline

Topics of interest / Keywords

⇒ Bayesian inference for large datasets

⇒ What is a posterior distribution?

⇒ Markov chain Monte Carlo methods (MCMC)

⇒ Our method: Light and Widely Applicable MCMC

⇒ Applications: Shape recognition, Regression ...
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Modeling the data

Let Y1,Y2, . . . ,YN be N data (≡ observations)

Yi can represent any type of information:
a measurement of a physical experimentation,
a sensor response,
a survey,
a graph, an image...

Yi can be a real number/vector/matrix

Interest: modeling Yi is finding a probability distribution f such that

the distribution of Y1,Y2, . . . is roughly f
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Height survey example

We asked to a group of N = 1, 000 people their height
Yi is the i-th participant height...
Yi is a (positive!) real number (measure in cm)
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Why modeling is important?
Here the model has been estimated with:

f (y) = .65︸︷︷︸
prop. 1

×N ( 163︸︷︷︸
mean 1

, 4︸︷︷︸
var 1

, y) + .35×N (172, 4.6, y) .

Modeling Yi will allow to:
understand the uncertainty related to the phenomenon of interest
predict new data YN+1,YN+2, . . .

simulate new data
cluster the existing data
estimate missing/latent data, etc.

"All models are wrong, some are usefull", G. Box
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Likelihood function
Most of the time, f is assumed to belong to a parametric distribution

Yi ∼ f ≡ f (· | θ), θ ∈ Θ .

θ is called the parameter of the model (mean, variance, correlations...)
θ can be a real number/vector/matrix
Θ is the set of all possible parameters

The function y → f (y | θ) is called the likelihood function

The Question: how to estimate a "good" θ, say θ∗, such that

f (· | θ∗) is a "good" model ??
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The Bayesian approach
In Bayesian statistics, θ is regarded as a random variable

We are not looking for an unique good θ∗ but for a good range of those!

An initial guess on θ is conveyed through its prior distribution p
⇒ so, in absence of data, the distribution of θ is simply

Pr(θ) = p(θ) .

Now, as soon as some data are observed, the distribution of θ is updated:

Pr(θ |Y1, . . . ,YN) ∝ f (Y1, . . . ,YN | θ)p(θ) .

⇒ Pr( · |Y1, . . . ,YN) is called the posterior distribution of θ given
Y1, . . . ,YN .
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The Bayesian question

Remember, our objective is to derive the location of the good θs to model
Y1, . . . ,YN .

In the Bayesian approach, we want to have a good knowledge of the
posterior distribution

The Bayesian question: Having observed Y1, . . . ,YN ,
what is the probability that θ belongs to an interval/region I?

⇒ Pr(θ ∈ I |Y1, . . . ,YN) =
∫
I f (Y1, . . . ,YN | θ)p(dθ)∫
Θ f (Y1, . . . ,YN | θ)p(dθ)

Main issue: for realistic models, there is no hope to get this!
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A computational solution

It is possible to approximate the quantity Pr(θ ∈ I |Y1, . . . ,YN) with an
arbitrary precision

Provided that we can simulate samples from the posterior

θ1, θ2, . . . ∼ Pr( · |Y1, . . . ,YN)

⇒ Example!
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Example
Assume the following posterior distribution Pr(θ |Y1, . . . ,YN) is unknown
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Pr(θ ∈ (2, 4) |Y1, . . . ,YN)?

⇒ in this case, we know it exactly: Pr(θ ∈ (2, 4) |Y1, . . . ,YN) = .24

(Surprisingly!) even if Pr(θ |Y1, . . . ,Yn) is unknown,
it may be possible to get samples θ1, θ2, . . . from it
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Example: 10 samples from Pr(θ |Y1, . . . ,YN)
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Figure: P̂r(θ ∈ (2, 4) |Y1, . . . ,YN) = .1 (true=.24)
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Example: 100 samples from Pr(θ |Y1, . . . ,YN)

0 2 4 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Posterior distribution

θ

 

 
Pr(θ | Y

1
,...Y

N
)

0 5 10 15 20 25 30
0

5

10

15

20

25

θ

100 simulations

Figure: P̂r(θ ∈ (2, 4) |Y1, . . . ,YN) = .17 (true=.24)
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Example: 1000 samples from Pr(θ |Y1, . . . ,YN)
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Figure: P̂r(θ ∈ (2, 4) |Y1, . . . ,YN) = .25 (true=.24)
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Example: 105 samples from Pr(θ |Y1, . . . ,YN)
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Figure: P̂r(θ ∈ (2, 4) |Y1, . . . ,YN) = .2408 (true=.24)
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Bridge to our actual problem

In a sense: the initial modeling problem reduces to a simulation problem

Question: How do simulation methods cope when the number of data

increases, i.e N →∞?

⇒ actually very badly!

We understand that Pr(θ |Y1, . . . ,Y100) might be less complicated that
Pr(θ |Y1, . . . ,Y106)
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Outline

Topics of interest / Keywords

⇒ Bayesian inference

⇒ Posterior distribution

⇒ Markov chain Monte Carlo methods

⇒ our method: Light and Widely Applicable MCMC

⇒ Applications: Regression, Classification, Shape recognition...
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Simulation of a posterior distribution

The most popular method to get samples from θ ∼ Pr( · |Y1, . . . ,YN) is
called Metropolis–Hastings (M–H) (1956)

⇒ implementable as long as θ → f (Y1, . . . ,YN | θ)p(θ) is available
⇒ theoretically justified
⇒ 50, 000+ citations for the two main papers of the method (G Scholar)

M–H is a particular instance of a general class of simulation methods
called Markov chain Monte Carlo algorithms (MCMC)
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Metropolis–Hastings algorithm
M–H simulates a non–independent sequence of parameters starting with a
random θ0 ∈ Θ

θ0 → θ1 → θ2 → . . .→ θk ,

with the following two steps:

(i) from θk , propose a candidate θ̃ ∼ Q(θk , ·)
(ii) set θk+1 = θ̃ with proba.:

α(θk , θ̃) = min
{
1, f (Y1, . . . ,YN | θ̃)p(θ̃)Q(θ̃, θk)

f (Y1, . . . ,YN | θk)p(θk)Q(θk , θ̃)

}
and θk+1 = θk otherwise.

Critical issue: If N is very large, computing f (Y1, . . . ,YN | θ̃)
at each iteration is prohibitively expensive
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Shifting the question

Remember, we want to estimate for any interval I

Pr(θ ∈ I |Y1, . . . ,YN) ≈ 1
L

L∑
`=1

#{θ` ∈ I} .

Classical: How big L should be to reach a given precision?

pb: this does not consider the simulation burden generated by each sample

Topical: For a given CPU budget, how can we derive
a tradeoff between precision and feasibility?
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Scaling up Metropolis–Hastings
From 2010 onwards, bypassing this severe limitation in the hot topic
(tens of those papers in the best stat journals)

Most of the proposed strategies consist in:
(Sol-1) using an unbiased estimate of the likelihood f (Y1, . . . ,YN | θ̃)

⇒ pb specific + estimate might be as costly as likelihood eval.
(Sol-2) taking with a prescribed probability the same decision as the

original M–H but using a subset of the data
⇒ assumptions hold for f
⇒ in practice, a large portion of the data are used (75-90%)

Our work aimed at finding a method:
• Widely applicable (universal, like M–H)
• Light (with a controlled CPU cost)
• Simple (Black-box/few parameters)
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Light and Widely Applicable (LWA) MCMC: motivation
Consider an exponential model i.e a likelihood function of the type:

f (y | θ) = exp
{

h(θ)TS(y)
}/

Z (θ) , Z (θ) =
∫

exp
{

h(θ)TS(y)
}

dy .

For the likelihood of a set of independent data, we have:

f (Y1, . . . ,YN | θ)1/N = exp
{

h(θ)T 1
N

N∑
`=1

S(Y`)
}/

Z (θ) .

Now consider a subset of those data {Y`, ` ∈ U} of size n

f (Y`, ` ∈ U | θ)1/n = exp

h(θ)T 1
n
∑
`∈U

S(Y`)

/Z (θ) .

Think about the case where: 1
n
∑

`∈U S(Y`) = 1
N
∑N

`=1 S(Y`)
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LWA–MCMC: the intuition

For this (very specific) setup: inference based on N data Y1, . . . ,YN is the
same as using a subset of n data {Y`, ` ∈ U} provided that

1
N

N∑
`=1

S(Y`) = 1
n
∑
`∈U

S(Y`) .

Our intuition: for any type of models, if it exists a subset {Y` , ` ∈ U} s.t.

L(Y1, . . . ,YN) ≈ L(Y`, ` ∈ U) ,

then
Pr( · |Y1, . . . ,YN) ≈ Pr( · |Y`, ` ∈ U) .
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LWA–MCMC: critical questions

• How to assess that L(Y1, . . . ,YN) ≈ L(Y`, ` ∈ U)?

⇒ we use a set of (pb specific) summary statistics S (moments,
quantiles,...) and assign to each subset U of size n a weight

ω(U) ∝ exp

−ε
∥∥∥∥∥∥ 1N

N∑
`=1

S(Y`)− 1
n
∑
`∈U

S(Y`)

∥∥∥∥∥∥
2
 , ε > 0 .

• Which subset to choose from? (there are
(N

n
)
of them)

⇒ we refuse to choose!
⇒ each subset U should be involve in the process according to ω(U)
⇒ the different subsets will act complimentarily
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Light and Widely Applicable MCMC: the algorithm
Starting with a random θ0 ∈ Θ, U0 ⊆ {1, . . . ,N} and |U0| = n

(θ0,U0)→ (θ1,U1)→ (θ2,U2)→ · · · → (θk ,Uk) ,

step (i) Refreshing the subset Uk
⇒ propose a new subset Ũ ∼ K (Uk, ·)
⇒ set Uk+1 = Ũ with proba. min(1, ω(Ũ)/ω(Uk)) and
Uk+1 = Uk otherwise

step (ii) Simulation of θk+1
⇒ from θk , propose a candidate θ̃ ∼ Q(θk , ·)
⇒ set θk+1 = θ̃ with proba.:

α(θk , θ̃ |Uk+1) = min
{
1, f (Y`, ` ∈ Uk+1 | θ̃)p(θ̃)Q(θ̃, θk)

f (Y`, ` ∈ Uk+1 | θk)p(θk)Q(θk , θ̃)

}

and θk+1 = θk otherwise.
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LWA–MCMC: summary

Given the CPU budget τ available

(i) select the subset size n
⇒ to get a reasonable nb of samples θ1, θ2, . . . using the ressource τ

(ii) decide on a set of summary statistics S and on ε
(iii) run LWA–MCMC
⇒ retrieve samples θ1, θ2, . . . , θL

The set of "good" parameters can now be found in an interval I∗ such that

Pr(θ ∈ I∗ |Y1, . . . ,YN) ≈ 1
L

L∑
`=1

#{θ` ∈ I∗}

is sufficiently high.
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Outline

Topics of interest / Keywords

⇒ Bayesian inference

⇒ Posterior distribution

⇒ Markov chain Monte Carlo methods

⇒ our method: Light and Widely Applicable MCMC

⇒ Applications: Regression, Classification, Shape recognition...
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Example: estimation of template shapes
Data are handwritten digits (MNIST database)

Figure: example of data

The dataset contains N = 10, 000 images of size 16x16
Each image belongs to a class Ik ∈ {1, . . . , 5} assumed to be known
The model writes:

Ik = i , Yk = φ(θi ) + σ2εk , εk ∼ N (0, 1) .
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Example: estimation of template shapes
Computational budget: 60 mins, we choose n = 100
S is the proportion of digits of each class
⇒ We maintain in each subset the correct proportion of 1,2,etc.

time M–H LWA–MCMC
3 mins

15 mins

30 mins

60 mins

Figure: Efficiency of template estimation through M–H and LWA–MCMC.
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Example: estimation of template shapes

Quantitatively: d(t) =
∑5

i=1

∥∥∥θ∗i − 1
L(t)

∑L(t)
`=1 θi ,`

∥∥∥ ,
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Example: regression in ARMA model
Data: a very long time series {Yt , t ∈ N}

Yt+1 = αYt + βZt + Zt+1 + γ

where
• Zt+1 ∼ N (0, σ2)
• we set α = 0.5, β = 0.7, γ = 1, σ = 1
• Summary statistic S: autocorrelation time
We want to estimate θ = (α, β, γ) from the observations Y1,Y2, . . .

0 100 200 300 400 500 600 700 800 900 1000
−6
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−2
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2
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Figure: Realization of an ARMA of lenght T = 107
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Example: regression in ARMA model
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Figure: M–H (dashed, blue) and LWA–MCMC (dashed, black n = 100 and red
n = 1000)
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Example: regression in ARMA model

αk βk γk

0.5

0.7

1

LWA-MCMC, n=10,000, ε=1, S0

αk βk γk

0.5

0.7

1

LWA-MCMC, n=1,000, ε=1, S0

αk βk γk

0.5

0.7

1

LWA-MCMC, n=100, ε=1, S0

Evolution of the estimates of α, β and γ for different subset sizes
n = 10, 000, n = 1000 and n = 100
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Example: regression in ARMA model
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Conclusion

LWA–MCMC approach works on subsets of data which are
representative of the full data set

for a given CPU budget, the number of samples L from a proxy of
Pr( · |Y1, . . . ,YN) can be made arbitrarily large
obviously as n/N � 1, results deteriorate...
but inference can be corrected by being more "picky" with respect to
the subsets

⇒ A ready-to-use method for efficient Bayesian inference in large data
contexts
⇒ Work ahead investigates the theoretical implication of our
approximation

Thank you for your interest!
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