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Topics of interest / Keywords

= Bayesian inference for large datasets

= What is a posterior distribution?

= Markov chain Monte Carlo methods (MCMC)

= Our method: Light and Widely Applicable MCMC

= Applications: Shape recognition, Regression ...
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-
Modeling the data

Let Y1, Y5,..., be N data (= observations)
| can represent any type of information:
a measurement of a physical experimentation,
a sensor response,
a survey,
a graph, an image...

m Y can be a real number/vector/matrix

Interest: modeling Y; is finding a probability distribution f such that

the distribution of Y37, Y5,... is roughly f
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Height survey example

We asked to a group of N = 1,000 people their height
] is the i-th participant height...
m Y, is a (positive!) real number (measure in cm)

Histogramme of the heights
150 T T

population
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heights (cm)
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-
Why modeling is important?

Here the model has been estimated with:

f(y):.\6/5_)/XN(@,¢,)/)+.35XN(172,4.6,y).

prop. 1 meanl varl
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prop. 1 meanl varl

Modeling Y; will allow to:
m understand the uncertainty related to the phenomenon of interest
predict new data Yy .1, Yyio,.-.
simulate new data
cluster the existing data

"
|
"
m estimate missing/latent data, etc.
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-
Why modeling is important?

Here the model has been estimated with:

f(y):.\6/5_)/XN(@,¢,)/)—I—.35><N(172,4.6,y).

prop. 1 meanl varl

Modeling Y; will allow to:
m understand the uncertainty related to the phenomenon of interest
predict new data , Y
simulate new data
cluster the existing data

"
|
"
m estimate missing/latent data, etc.

"All models are wrong, some are usefull", G. Box
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Likelihood function
Most of the time, f is assumed to belong to a parametric distribution

Vi~ f=fF(-]0), 0cO.

m 0 is called the parameter of the model (mean, variance, correlations...)
m 0 can be a real number/vector/matrix
m O is the set of all possible parameters

The function y — f(y | 0) is called the likelihood function
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Likelihood function
Most of the time, f is assumed to belong to a parametric distribution

~f=f(-16), 0ecO.

m 0 is called the parameter of the model (mean, variance, correlations...)
m 0 can be a real number/vector/matrix
m O is the set of all possible parameters

The function y — f(y | 0) is called the likelihood function

The Question: how to estimate a "good" 6, say 0%, such that

f(-16%) is a "good" model 77
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Height survey example

Histogramme of the heights
150 . T

population
=
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145 160 165
heights (cm)
Different models corresponding to different 8 s
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145 150 155 160 165 170 175 180 185 190
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The Bayesian approach

In Bayesian statistics, 6 is regarded as a random variable

We are not looking for an unique good 6* but for a good range of those!
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The Bayesian approach

In Bayesian statistics, 6 is regarded as a random variable

We are not looking for an unique good 6* but for a good range of those!

An initial guess on @ is conveyed through its prior distribution p
= s0, in absence of data, the distribution of € is simply

Now, as soon as some data are observed, the distribution of 6 is updated:

Pr(0] Vi,..., Vi) o< F(Vas..., Vi | 0)p(6).

= Pr(-| Y1,..., Yn) is called the posterior distribution of 6 given

yee ey
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The Bayesian question

Remember, our objective is to derive the location of the good s to model
Yi,..., Yn.
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The Bayesian question

Remember, our objective is to derive the location of the good s to model

gee ey

In the Bayesian approach, we want to have a good knowledge of the
posterior distribution

The Bayesian question: Having observed Y, ..., 7

what is the probability that 6 belongs to an interval /region Z7

=Pl cT|Y,..., ):fzf( I

Florian Maire with Nial Friel & Pierre Alquier]

10 / 36



The Bayesian question

Remember, our objective is to derive the location of the good s to model

gee ey

In the Bayesian approach, we want to have a good knowledge of the
posterior distribution

The Bayesian question: Having observed Yi,..., Yy,

what is the probability that 6 belongs to an interval /region Z7

L0 V1 8)p(d)
=Pr(0eZ|VY,..., )_fgf( yeey Y 10)p(dO)

Main issue: for realistic models, there is no hope to get this!
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A computational solution

It is possible to approximate the quantity Pr(6 € Z| Y1,..., Y) with an
arbitrary precision

Provided that we can simulate samples from the posterior
91,(92,... ~ PI’(| Yl,..., Y/\/)

= Example!
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Example

Assume the following posterior distribution Pr(6 ] Y7,..., Y} ) is unknown

Posterior distribution

0.14 T
——Pr@1Y,,.Y))

Pr(0 € (2,4)] Yi,..., Yn)?

= in this case, we know it exactly: Pr(6 € (2,4)| Y1,..., Yn) = .24

(Surprisingly!) even if Pr(6] Yi,..., Ys) is unknown,

it may be possible to get samples 61,605, ... from it
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-
Example: 10 samples from Pr(0| Y3,..., Yy)

Posterior distribution

014 T
Pr(®| Vl' VN)
012 =
01f H 4
oosf- [ = B
0.06 H —
0.04 H 4
0.02 H B
H F . . .
0 2 4 s 10 15 20 25 30
]
10 simulations
T
I I I |
10 15 20 25 30

Figure: Pr(6 € (2,4)| Y1,..., Vi) = .1 (true=.24)

Florian Maire with Nial Friel & Pierre Alquier| 13 / 36



|
Example: 100 samples from Pr(6

N—r

Posterior distribution
014 r

Pr®| Y,...Y,)

) L L L
0 2 4 s 10 15 20 25 30
[

100 simulations
25 T

Figure: Pr(6 € (2,4)| V1,..., Vi) = .17 (true=.24)
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|
Example: 1000 samples from Pr(6| Yi,..., Yy)

Posterior distribution
014 r

Pr®| Y,...Y,)

) L L L
0 2 4 s 10 15 20 25 30
[

1000 simulations
T

Figure: Pr(6 € (2,4)| V1,..., Vi) = .25 (true=.24)
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-
Example: 10° samples from Pr(0] Yi,..., V)

Posterior distribution
014 r

PIO| Y, Y,
012 -
01 H 4
008 H B
0.06 H q
0.04 H 4
0.02 H B
1 - 1 I .
0 2 4 5 10 15 20 25 30
[
100000 simulations
T
.
25 30

Figure: Pr(6 € (2,4)| Y1,..., i) = .2408 (true=.24)

Florian Maire with Nial Friel & Pierre Alquier| 16 / 36



Bridge to our actual problem

In a sense: the initial modeling problem reduces to a simulation problem

Florian Maire with Nial Friel & Pierre Alquier| 17 / 36



Bridge to our actual problem

In a sense: the initial modeling problem reduces to a simulation problem

Question: How do simulation methods cope when the number of data

increases, i.e N — oco?

= actually very badly!

We understand that Pr(6] Y4,..., ) might be less complicated that
Pr(0]| Yi,..., )
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Outline

Topics of interest / Keywords

= Bayesian inference

= Posterior distribution

= Markov chain Monte Carlo methods

= our method: Light and Widely Applicable MCMC

= Applications: Regression, Classification, Shape recognition...
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Simulation of a posterior distribution

The most popular method to get samples from 6 ~ Pr(-| Y1,..., Yy) is
called Metropolis—Hastings (M—H) (1956)
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Simulation of a posterior distribution

The most popular method to get samples from 6 ~ Pr(-| Y1,..., Yy) is
called Metropolis—Hastings (M—H) (1956)

= implementable as long as 0 — f(Y7,..., Y| 0)p(0) is available
= theoretically justified

= 50,000+ citations for the two main papers of the method (G Scholar)

M-H is a particular instance of a general class of simulation methods
called Markov chain Monte Carlo algorithms (MCMC)
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Metropolis—Hastings algorithm

M-H simulates a non—independent sequence of parameters starting with a
random 6y € ©

90—)01—)92—)...—)9/(,
with the following two steps:
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Metropolis—Hastings algorithm

M-H simulates a non—independent sequence of parameters starting with a
random 6y € ©

90—)01—)92—)...—)9/(,
with the following two steps:

(i) from 6y, propose a candidate 6 ~ Q(6, -)
(i) set fx41 = 6 with proba.:

a0, 0) = min {1

F(Y1, ..., Y | 0)p(0)Q(E,6)) }
TF(YL, e Y 1 0k)p(0:) Q(6k, 6)

and 6,1 = 0 otherwise.

Florian Maire with Nial Friel & Pierre Alquier]

20 / 36



Metropolis—Hastings algorithm

M-H simulates a non—independent sequence of parameters starting with a
random 6y € ©

90—)91—)92—)...—)9/(,
with the following two steps:

(i) from 6y, propose a candidate 6 ~ Q(6, -)
(i) set fx41 = 6 with proba.:

~ Vi, oo, Y |0)p(0)Q(0
a(ekag):min{lj f(Y1,.-, N|9)p(0)Q(e,9k)~}
f(Y1>7YN‘9k)p(0k)Q(9ka0)
and 6,1 = 0 otherwise.

Critical issue: If N is very large, computing f(

at each iteration is prohibitively expensive
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Shifting the question

Remember, we want to estimate for any interval 7

1 L
Pr(&eI]Yl,...,YN)%ZZ#{HgGI}.
(=1
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-
Shifting the question

Remember, we want to estimate for any interval 7

1 L
Pr(O € Z| Vi, Vi) T Y #{0e €T}
/=1

Classical: How big L should be to reach a given precision?

pb: this does not consider the simulation burden generated by each sample

Topical: For a given CPU budget, how can we derive

a tradeoff between precision and feasibility?
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-
Scaling up Metropolis—Hastings

From 2010 onwards, bypassing this severe limitation in the hot topic
(tens of those papers in the best stat journals)
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Scaling up Metropolis—Hastings

From 2010 onwards, bypassing this severe limitation in the hot topic
(tens of those papers in the best stat journals)

Most of the proposed strategies consist in:
(Sol-1) using an unbiased estimate of the likelihood f(V1,..., Yy |60)
= pb specific 4+ estimate might be as costly as likelihood eval.
(Sol-2) taking with a prescribed probability the same decision as the
original M—H but using a subset of the data
= assumptions hold for f
= in practice, a large portion of the data are used (75-90%)

Our work aimed at finding a method:
e Widely applicable (universal, like M-H)

e Light (with a controlled CPU cost)
e Simple (Black-box/few parameters)
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Light and Widely Applicable (LWA) MCMC: motivation

Consider an exponential model i.e a likelihood function of the type:

v 10) =exp {HOTSW)} /26, 2(6) = [ e {HE)S(} ay.
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Light and Widely Applicable (LWA) MCMC: motivation

Consider an exponential model i.e a likelihood function of the type:

v 10) =exp {HOTSW)} /26, 2(6) = [ e {HE)S(} ay.
For the likelihood of a set of independent data, we have:
1N
F(Viros Vi [0)YN = exp {h(e)TN;S(v,)} /2(9).
Now consider a subset of those data { Y}, £ € U} of size n

F(Y, £eU|0)Y" = exp {h(e)T,l7 ZS(Y,)} /Z(0).
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-
Light and Widely Applicable (LWA) MCMC: motivation

Consider an exponential model i.e a likelihood function of the type:

v 10) =exp {HOTSW)} /26, 2(6) = [ e {HE)S(} ay.
For the likelihood of a set of independent data, we have:
1N
F(Yi,.o, Y| 0)YN =exp {h(e)TN;S(Y,)} /Z(9).
Now consider a subset of those data { Y}, £ € U} of size n

F(Y, £eU|0)Y" = exp {h(e)T,l7 ZS(Y,)} /Z(0).

el

Think about the case where: 37, S(Y7)
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N
LWA-MCMC: the intuition

For this (very specific) setup: inference based on N data Yi,..., Y}y is the
same as using a subset of n data {Y), ¢ € U} provided that

N
LS sy =23 s(n)
vS Z

/=1

ZEU
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N
LWA-MCMC: the intuition

For this (very specific) setup: inference based on N data Yi,..., Y}y is the
same as using a subset of n data {Y), ¢ € U} provided that

N
1
NS = Z S(V)
=1 =y
Our intuition: for any type of models, if it exists a subset {Y},¢ € U} s.t.

ﬁ(yl,...,Y/\/) %L’(Y/,ée U),

then
PI’(-|Y1,...,Y/\/)%Pr('|Y/,£EU).
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LWA-MCMC: critical questions

e How to assess that £(Y7,..., V)~ L(Y,, L€ U)?
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LWA-MCMC: critical questions

e How to assess that £(Y7,..., V)~ L(Y,, L€ U)?
= we use a set of (pb specific) summary statistics S (moments,
quantiles,...) and assign to each subset U of size n a weight

2

w(U) oxexp{ —e , e>0.

y 1
NZS(Y/)— ;ZS(Y/)

(=1 leu
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LWA-MCMC: critical questions

e How to assess that £(Y7,..., V)~ L(Y,, L€ U)?

= we use a set of (pb specific) summary statistics S (moments,
quantiles,...) and assign to each subset U of size n a weight

2

w(U) oxexp{ —e , e>0.

1 Y 1
5 2S00 ==>25(1)
(=1

leu

e Which subset to choose from? (there are (',\,’) of them)
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|
LWA-MCMC: critical questions

e How to assess that £(Y7,..., V)~ L(Y,, L€ U)?
= we use a set of (pb specific) summary statistics S (moments,
quantiles,...) and assign to each subset U of size n a weight

2

w(U) oxexp{ —e , e>0.

1L 1
NZS(Y/)— ;ZS(Y/)
/=1

leu

e Which subset to choose from? (there are ('r\,’) of them)

= we refuse to choose!

= each subset U should be involve in the process according to w(U)
= the different subsets will act complimentarily
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Light and Widely Applicable MCMC: the algorithm

Starting with a random 6y € ©, Uy C {1,..., N} and |Ug| = n

(007 UO) - (917 Ul) - (927 U2) — (91(7 Uk)a
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Light and Widely Applicable MCMC: the algorithm

Starting with a random 6y € ©, Uy C {1,..., N} and |Ug| =n
(6o, Uo) = (61, U1) = (62, Uz) = -+ = (0k, Ui)
step (i) Refreshing the subset U,
= propose a new subset U ~ K(U,,-)

= set U, ; = U with proba. min(1,w(U)/w(Uy)) and
U1 = Uy otherwise
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Light and Widely Applicable MCMC: the algorithm

Starting with a random 6y € ©, Uy C {1,..., N} and |Ug| = n

(00, Ug) = (01,U1) = (02,U2) — -+ = (Ok, Uy),

step (i) Refreshing the subset U,

= propose a new subset U ~ K(U,,-)
= set U, ; = U with proba. min(1,w(U)/w(Uy)) and
U1 = Uy otherwise

step (ii) Simulation of 0.1
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Light and Widely Applicable MCMC: the algorithm

Starting with a random 6y € ©, Uy C {1,..., N} and |Ug| = n

(00, Ug) = (01,U1) = (02,U2) — -+ = (Ok, Uy),

step (i) Refreshing the subset U,

= propose a new subset U ~ K(U,,-)
= set U, ; = U with proba. min(1,w(U)/w(Uy)) and
U1 = Uy otherwise

step (ii) Simulation of 0.1

= from 6y, propose a candidate § ~ Q(fy, -)
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Light and Widely Applicable MCMC: the algorithm

Starting with a random 6y € ©, Uy C {1,..., N} and |Ug| = n

(00, Ug) = (01,U1) = (02,U2) — -+ = (Ok, Uy),

step (i) Refreshing the subset U,

= propose a new subset U ~ K(U,,-)
= set U, ; = U with proba. min(1,w(U)/w(Uy)) and
U1 = Uy otherwise

step (ii) Simulation of 0.1

= from 0y, propose a candidate 6 ~ Q(by,-)
= set 0y41 = 0 with proba.:

a(0h 0| V1) = min{l, F(0, £ € Ui [0)p(8)Q(0, 0) }
F(Vi, € € Uit [0k)p(0k) Q(0k, 0)

and 6,1 = 6 otherwise.
26 / 36



-
LWA-MCMC: summary

Given the CPU budget 7 available
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LWA-MCMC: summary

Given the CPU budget 7 available
(i) select the subset size n
= to get a reasonable nb of samples 61,65, ... using the ressource 7
(ii) decide on a set of summary statistics S and on e
(iii) run LWA-MCMC
= retrieve samples 61,0,,...,0;
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LWA-MCMC: summary

Given the CPU budget 7 available

(i) select the subset size n
= to get a reasonable nb of samples 61,65, ... using the ressource 7

(ii) decide on a set of summary statistics S and on e
(iii) run LWA-MCMC
= retrieve samples 61,0,,...,0;

The set of "good" parameters can now be found in an interval Z* such that

1 L
PO € Z*| Vi, Vi) m | 2 #HOe € T}
/=1

is sufficiently high.
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Outline

Topics of interest / Keywords

= Bayesian inference

= Posterior distribution

= Markov chain Monte Carlo methods

= our method: Light and Widely Applicable MCMC .~

= Applications: Regression, Classification, Shape recognition...
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Example: estimation of template shapes

Data are handwritten digits (MNIST database)

Figure: example of data

m The dataset contains N = 10,000 images of size 16x16
m Each image belongs to a class I, € {1,...,5} assumed to be known

m The model writes:
Ie=1i, = ¢(0;) + ey, ex ~N(0,1).
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Example: estimation of template shapes

Computational budget: 60 mins, we choose n = 100

S is the proportion of digits of each class

= We maintain in each subset the correct proportion of 1,2,etc.

time

M-H

e AENEE
e HREEE
o HEEEE
comins | I I G Y

LWA-MCMC
EENEEN
/|21 31%15
/12131415
HEEEN

Figure: Efficiency of template estimation through M-H and LWA-MCMC.
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Example: estimation of template shapes

Quantitatively: d(t) = X5, |07 — gy T2 01|

i

70
o
65k ° o M-
o © o LWA-MCMC
A
60 2 N
B o
o °
55 o o
° o
° )
° ©
e N
4 o
H o
Q o
K o,
2 )
‘% o
8 o
3
H
3L 8 o
E N
N
o
%0
30 0
oo,
o
” ooaoeoooooeooeaoDMMM
20 .
5 10 15 20 25 30 35 10 15 50 55 60
time t (min)
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-
Example: regression in ARMA model

Data: a very long time series {Y;, t € N}

Vici=aYe+ B2+ Zey1 +
where
o Zii1 ~N(0,0%)
e weseta =05, =07, v=10=1
e Summary statistic S: autocorrelation time
We want to estimate § = («, [3,7) from the observations Y7, Y5,...

:

Figure: Realization of an ARMA of lenght T = 107
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Example: regression in ARMA model

| M“. A i %‘ 1; g
fi\“gf“ﬁﬂ\fvwm W W W‘ '{‘ wm,\’ ‘.W
O.SJ f

¥

-

P il Wl
Lt

WWWWWWWWWWWWWWMWWW%WMWW
'WMWWWWWWWWWWWWMWWWM%WW%WW

i
i

0.4

marginal sample path 9k

-0.2 L L |
0 10 20 30 40 50 60

Figure: M=H (dashed, blue) and LWA-MCMC (dashed, black n = 100 and red
n = 1000)

Florian Maire with Nial Friel & Pierre Alquier| 33 /36



Example: regression in ARMA model

LWA-MCMC, n=10,000, e=1, S,

LWA-MCMC, n=1,000, e=1, S;

LWA-MCMC, n=100, e=1, S,

T 3
' == ' :I !
: =
T + :
e 3 3
0.7 = 07 == 07 § —
== - -+ | — :
—+ : . :
+ ‘ : 3
0.5 =+ 0.5 == 0.5 l:l = -
= == — H
w ;
& 7 % o + g - g
Evolution of the estimates of «, 5 and ~ for different subset sizes
n = 10,000, n = 1000 and n = 100
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Conclusion

m LWA-MCMC approach works on subsets of data which are
representative of the full data set
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Conclusion

m LWA-MCMC approach works on subsets of data which are
representative of the full data set

m for a given CPU budget, the number of samples L from a proxy of
Pr(-]Yi,..., Yn) can be made arbitrarily large

m obviously as n/N < 1, results deteriorate...

m but inference can be corrected by being more "picky" with respect to
the subsets

= A ready-to-use method for efficient Bayesian inference in large data

contexts
= Work ahead investigates the theoretical implication of our

approximation

Thank you for your interest!
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