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Context
Protein is a chain of amino acids
Proteins are assumed to be found in a (possibly large) number
of states X ∈ S
A state encompasses information such as the distance/angle
between amino acids, energy levels... (so |S| � 1)

Figure: Protein folding pathway of 1E0G obtained in Langevin dynamics
simulations (A. Liwo et al, PNAS, 2005)
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Inference of protein dynamics
A model for protein dynamics (typically a Markovian process {Xt}
(t > 0)) can be fitted from experimental measurements

Figure: Model of a protein energy landscape (H. Ma et al, PNAS, 2006)

Equilibrium distribution of {Xt} is
Pr(Xt = x) ∝ exp{−H(x)}

5 / 42



Inference of protein dynamics

Interest lies in getting summaries from the model
Is there a simpler model? i.e. X ∈ S ′ and |S ′| � |S|
⇒ Is there an equivalent two state model
S = {Folded}, {Unfolded}?
If the protein is at an intermediate state what is the chance
that it will first Fold before Unfold?

Spectral representation of the Markov operator ruling the dynamic
of {Xt} reveals some answers to those questions.
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Markov chain Monte Carlo algorithms

Class of algorithms that simulate discrete time Markov chains
{Xk} (k ∈ N) to perform numerical integration (Bayesian inference
in particular)

Quantitatively, those algorithms are usually assessed/ranked
according to:

Speed of convergence of the law of the chain to the target
distribution
Asymptotic variance of Monte Carlo estimators

Here again, those quantities can be revealed by the spectral
analysis of the Markov operator that simulates {Xk}
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Purpose of the talk

Gain some insight on how to diagnose when a two state
approximation of the protein dynamics model is relevant
Quantify this approximation
Compare spectral analysis of continuous time Markov chain vs
discrete time Markov chains in general state space
How the approximation of the chain distribution established in
CTMC can be interpreted in the context of MCMC algorithms
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Specification of the model
Even though protein dynamics are naturally parameterized by
continuous parameters (angles, momenta, energy), it is
assume to be discretized i.e.

Xt ∈ {1, 2, . . . ,N}
with N � 1
Each state i corresponds to a given range of angle, energy...
The process {Xt} is assumed to be memoryless (Master
equation)

∆{particles in state i during t,t+d} =
#{new particles in state i during in t,t+dt}
−#{particles leaving state i during in t,t+dt}

and

#{new particles in state i during in t,t+dt}
=
∑
k 6=i

αk,i #{particles in state k at time t}
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Continuous Time Markov chain (CTMC)
The previous assumptions are equivalent to CTMC model.
Let {Xt} (t ≥ 0) be a stochastic process on the discrete state
S = {1, . . . ,N} that evolves as follows:

P(Xt+dt = j |X0:t ,Xt = i) =
P(Xt+dt = j |Xt = i) = Qi ,jdt + o(dt) , i 6= j (1)

In this assumption {Xt} is a Continuous Time Markov chain
(CTMC) and is characterized by:

1 an initial distribution π0 on (S,S)
2 an infinitesimal generator Q ∈MN(R) defined as

i 6= j
Qi,j = d

dt limt↓0
P(Xt = j |X0 = j)

i = j
Qi,i = −

∑
i 6=j

Qi,j
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Distribution of the CTMC
We denote by P(t) = {P(Xt = j |X0 = i)}i ,j the matrix of
probability of transition of the CTMC. It is related to Q by:

P(t) = exp{Qt}

(from Kolmogorov equations)
Denoting π(t) = P(Xt ∈ ·) =

∑N
i=1 P(Xt ∈ ·,X0 = i), we have:

π(t) = π(0) exp{Qt}

Assumption 1
We will assume that {Xt}

has an unique stationary distribution π
is time reversible:

πiPi ,j(t) = πjPj,i (t) , ∀ t > 0 .
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Spectral decomposition of Q
Under Assumption 1, we have:

πP(t) = π, P(t)1 = 1, sp(P(t)) ⊆ (−1, 1) .
Spectral properties of P(t) propagates to that of Q.
Proposition 1
sp(P(t)) and sp(Q) are connected:

λ ∈ sp(Q)⇔ exp{λt} ∈ sp(P(t))

Indeed, let y be a right eigenvector of Q with eigenvalue λ, then

P(t)y =
N∑

k=0

tk

k!Q
ky =

N∑
k=0

(λt)k

k! y = exp{λt}y .

1 ∈ sp(P(t)) implies 0 ∈ sp(Q)
πQ = 0 so y (L)

1 = π

Q1 = 0 so y (R)
1 = 1

And in fact sp(Q) ⊂ (−∞, 0)
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Spectral decomposition of Q
Under Assumption 1, Q is diagonalizable:

Q = UDU−1

where:
U = [y (R)

1 · · · y (R)
N ] and y (R)

1 , . . . , y (R)
N are Q right

eigenvectors, with y (R)
1 = 1n

U−1 = [y (L)
1

′

· · · y (L)
N

′

]′ and y (L)
1 , . . . , y (L)

N are Q left
eigenvectors, with y (L)

1 = π

D = diag(λ1, . . . , λN) with λ1 = 0 and λi < 0 for i > 1
so that:

π(t) =
n∑
`=1

〈
π0, y (R)

`

〉
exp{λ`t}y (L)

`

= π +
n∑
`=2

〈
π0, y (R)

`

〉
exp{λ`t}y (L)

`
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Interpretation of the chain distribution

First, note that
∑N

i=1 y
(L)
` (i) = 0

π(t) = π +
n∑
`=2

〈
π0, y (R)

`

〉
exp{λ`t}y (L)

`

one stationary process (π)
(N − 1) transient processes ρ`

ρ`(t) =
〈
π0, y (R)

`

〉
exp{λ`t}y (L)

`

that act as probability mass transfer.
If π0 = π + δy (L)

` , it would take τ` := −1/λ` time to absorb the
perturbation (relaxation time).
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Spectral gap and the two state approximation

In protein dynamics, a Physicist is typically interested in knowing if
{Xt}t could be represented by a two state system

X̃t ∈ {Unfolded,Folded}

and what the transition rate between those two states look like.

Rule 1 (Buchete and Hummer, 2008)
If there is a "large enough" gap in the spectrum of Q, that is

γ = |λ2 − λ3|/|λ1 − λ2| ≈ 10

then {X̃t} is a "good" approximation of {Xt}.
Remark:

γ =
∣∣∣∣λ2
λ3
− 1

∣∣∣∣ =
∣∣∣∣τ2
τ3
− 1

∣∣∣∣ .
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Interpretation of this rule

Considering the time t ′ = t/τ2

π(t ′) = π + β2 exp{−t ′}y (L)
2 + β3 exp{−t ′(γ + 1)}y (L)

3 + · · ·

with βi =
〈
π0, y (R)

`

〉
.

If γ ≈ 10 then the N − 2 slowest processes might be neglected
without much error

π(t ′) ≈ π̃(t ′) = π + β2 exp{−t ′}y (L)
2

Fact 1
If γ ≈ 10, then the only probability mass transfer is between the
two basins of potential, namely {Unfolded} and {Folded}.
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Simulating random rate matrices

To gain more insight on the 2 state approximations, we resorted to
simulating random rate matrix:

simulate a stationary probability π
simulate the lower triangular rate matrix that has the m-first
diagonals non-zeros filled with

Qi ,j ∼ expo(λ)

fill the upper triangular to ensure reversibility Qj,i = Qi ,jπi/πj

fill the diagonal so that Qi ,i = −
∑

j 6=i Qi ,j

The parameter λ was tuned in order to match the slowest
relaxation time usually observed in protein dynamics.
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Two state approximation
We compare on one example where γ = 7.8 (N = 52), the true
distribution π and the two state approximation π̃

Figure: Representation of the probabilities π(t) and π̃(t) throughout
time (in log scale) for four states.
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Correlation between γ and error L2
To quantify the approximation, we define

Err =
∫
‖π(t)− π̃(t)‖2dt

and try to estimate the correlation with the gap.
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Figure: Realizations of gap plotted against Err.
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Illustration of the two states probability mass transfer
channel

Representation of the scaled second left eigenvector of Q: y (L)
2 (in

this example γ = 25.2).
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Representation of the scaled second left eigenvector of Q:
y (L)

2 (γ = 8.2 at the top and γ = 0.65 at the bottom)
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Gap distribution (N = 32)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

gap

pd
f, 

N
=

32

 

 
m=2
m=4
m=6
m=8
m=12
m=15

Figure: Gap probability density function for band diagonal random rate
matrix of different structures.
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Gap distribution (N = 64)
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Figure: Gap probability density function for band diagonal random rate
matrix of different structures.
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Discrete Time Markov chain (DTMC)
Let {Xk} (k ∈ N) be a stochastic process defined on the discrete
state space S = {1, . . . ,N} that evolves as follows:

for all (i , j) ∈ S2, P(Xk+1 = j |X0:k−1,Xk = i) =
P(Xk+1 = j |Xk = i) = Pi ,j ,

Under this assumption {Xk} is a Discrete Time Markov chain
(DTMC) and is characterized by:

1 an initial distribution π0 on (S,S)
2 a probability transition matrix P ∈MN(R) satisfying:

for all (i , j) ∈ S2

Pi,j ∈ (0, 1)

for all i ∈ S ∑
j∈S

Pi,j = 1
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A first observation

P(Xt+dt = j |Xt = i) = Qi ,jdt + o(dt) , i 6= j
m

P(Xt+dt 6= i |Xt = i) =
∑
j 6=i

Qi ,j︸ ︷︷ ︸
λi

dt + o(dt) (2)

same type of assumption than in a Poisson Process
⇒ we know that the time until a change of state (holding
time) is τ ∼ expo(λi ) and

Xt:t+τ− = i
next state satisfies

P(Xt+τ = j |Xt+τ− = i ,Xt+τ 6= i)

=

 0 if i = j
P(Xt+τ =j |Xt+τ−=i)
P(Xt+τ 6=i |Xt+τ−=i) = Qi ,j/λi otherwise
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Algorithms to simulate a CTMC

From the previous observation, we deduce that Algorithm 1
simulates the CTMC of interest:

Algorithm 1

(1) draw an initial state Y0 ∼ π0 (say Y0 ; i)
(2) draw a holding time (given Y0 = i) τ0 ∼ expo(λi )
(3) set X0:τ0 = i and draw a new state Y1 ∼ P̄i ,· where

P̄i ,j =
{

0 if i = j
Qi ,j/λi otherwise

And then iterate (2)–(3)
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Algorithms to simulate a CTMC

Let λ∗ = maxi λi and consider the following modification of
Algorithm 1:

Algorithm 2

(1) draw an initial state Y0 ∼ π0 (say Y0 ; i)
(2) draw a holding time τ0 ∼ expo(λ∗)
(3) set X0:τ0 = i and draw a new state Y1 ∼ R̄i ,· where

R̄i ,j =
{

1− λi/λ
∗ if i = j

Qi ,j/λ
∗ otherwise

And then iterate (2)–(3)
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CTMC–DTMC
Algorithm 2 can be decoupled:

simulate a Poisson process {Nt} with parameters λ∗

simulate a DTMC {Yk} with transition matrix R̄

Proposition 2
Simulate {Yk} and {Nt} as above. Define {Xt} as

∀ t ≥ 0 , Xt = YNt .

Then {Xt} is the desired CTMC.

a counting process: Nt a stochastic matrix: R̄i ,j (i 6= j)
DTMC δN Pi ,j
CTMC PP(λ∗) Qi ,j/λ

∗
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CTMC–DTMC: chain distribution

For the DTMC, it is straightforward to show that

πn = P(Xn ∈ ·) =
N∑

i=1
P(Xn ∈ ·,X0 = i) =

N∑
i=1

π0(i)Pn(i , ·) = π0Pn

and for the CTMC, inspired by Algorithm 2, we write:

π(t) =
N∑

i=1

∞∑
n=0

P(Xn ∈ ·,X0 = i ,Nt = n) =
∞∑

n=0
π0R̄n (λ∗t)n

n! exp{−λ∗} .
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(Discrete Time) Markov chain on general state space
Let {Xk} (k ∈ N) be a stochastic process defined on the general
state space (R,B) that evolves as follows:

for all xk ∈ R, A ∈ B , P(Xk+1 ∈ A |X0:k−1,Xk = xk) =
P(Xk+1 ∈ A |Xk = xk) = P(xk ,A) .

Under this assumption {Xk} is a (Discrete Time) Markov chain on
general state space and is characterized by:

1 an initial distribution π0 on (R,B)
2 a conditional probability distribution P(x , ·) on (R,B),

determined by a function p : R× R→ R+, satisfying:
for all x ∈ R

P(x ,R) =
∫
R
p(x , dy) = 1

for all x ∈ R, A ∈ B

P(x ,A) =
∫

A
p(x ,dy) ∈ (0, 1)
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Transition matrix as operator
For DTMC the operator is the transition matrix P and for CTMC
the operator is P(t)

left operator: let µ is a probability measure on S,

P : µ 7→ µP

is also a measure on S, it is interpreted as

µ 7→ P(X1 ∈ · |X0 ∼ µ)

right operation: let ω be a vector of Rn,

P : ω 7→ Pω

is interpreted as for all i ∈ S:

ωi 7→ E{ωX1 |X0 = i}

34 / 42



Markov kernel as operator
For Markov chains on general state space, the operator is P(x , ·)

left operation: let µ is a probability measure on (R,B),

P : µ 7→ µP =
∫
R
µ(dx)P(x , ·)

is also a measure on (R,B), it is interpreted as

µ 7→ P(X1 ∈ · |X0 ∼ µ)

right operation: let f : R→ R be a function,

P : f 7→ Pf =
∫
R
P(· , dx)f (x)

is interpreted as:

f 7→ E{f (X1) |X0 = ·}
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Markov operator on general state space
Consider the (infinite-dimensional) space of functions L2(π)
defined as:

L2(π) =
{
f : R→ R,

∫
π(dx)f (x)2 <∞

}
equipped with the scalar product

〈f , g〉 =
∫
π(dx)f (x)g(x) .

Assumption 2
We assume that {Xk} is π-reversible:∫

A
π(dx)P(x ,B) =

∫
B
π(dx)P(x ,A)

(ie detailed balance condition holds).

Proposition 3
Under Assumption 1, the operator P is a self adjoint operator on
L2(π).
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Spectral analysis on L2(π)
Theorem 1 (spectral theorem)
Let P be a compact and self-adjoint operator on an Hilbert space
H, then

there exists an orthonormal basis of H consisting of
eigenvectors of P
the non-zero eigenvalues of P form a finite or countably
infinite set {λk} such that

P =
∑
`≥1

λ`Π`

where Π` is the projection onto the eigenspace with
eigenvalue λk

So for any f ∈ L2(π),

Pf =

∑
`≥1

λ`Π`

 f =
∑
`>1

λ`Π`f
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Case where the Markov kernel is compact
Let {Xk} be generated by the Metropolis-Hastings algorithm:

1 propose X̃ ∼ Q(Xk , ·)
2 set Xk+1 = X̃ w.p.

1 ∧ π(X̃ )Q(X̃ ,Xk)
π(Xk)Q(Xk , X̃ )

and Xk+1 = Xk otherwise.

Proposition 4 (Atchadé and Perron, 2002)
If x

Q(x ,dy)Q(y ,dx) <∞

then P (the operator induced by M–H) is compact.
In particular this is always true for Independent M-H
(Q(x , dy) = Q(dy))
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Chain distribution
To apply the Spectral Theorem to simplify

P(Xn ∈ ·) = π0Pn(·)
we need to map the left operator P to its right.
Proposition 5
Let X0 ∼ π0 be the initial distribution of {Xk}. Assume {Xk} is
π-reversible, (P is self adjoint), then

π0Pn(A) =
∫

A
π(dx)Pnf0(x) ,

where f0 = dπ0/dπ.

Corrolary 1
Let {Xk} be a π-reversible Markov chain and P compact, then for
any A ∈ B(R)

πn(A) =
∫

A
π(dx)

∑
`≥1

λn
` f

(`)
0 (x) , f (`)

0 = Π`f0
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Chain distribution
Denote by {ε`}`≥1 the eigenvectors of P.
Since λ1 = 1 ∈ sp(P) and its eigenvector is the constant function,
ε1 = 1, we have:

πn(A) =
∫

A
π(dx) 〈f0, 1〉 1(x)+ε`(x)+

∑
`≥2

λn
`

∫
A
π(dx) 〈f0, ε`〉 ε`(x) ,

but 〈f0, 1〉 =
∫
π(dx)f0(x)1 =

∫
π0(dx) = 1 so that the first term

is simply πn(A).
Comparing discrete and continuous contexts we have for
i ∈ {1, . . . , n} and A ∈ B(R):

πt(i) = π(i) +
n∑
`=2

exp{λ`t}
〈
π0, y (R)

`

〉
y (L)
` (i) (3)

πn(A) = π(A) +
∑
`≥2

λn
` 〈f0, ε`〉

∫
A
π(dx)ε`(x) (4)

⇒ Under the self adjoint and compact assumption, a same
interpretation of the probability mass transfer can be given to
Markov chain on general state space. 40 / 42



Case where the Markov kernel is not compact
The spectral analysis is much more complicated.
Theorem 2 (Von Neumann’s Spectral Theorem)
If P is self-adjoint and (f , g) ∈ L2(π), then

〈φ(P)f , g〉 =
∫

sp(P)
φ(λ)dµf ,g ,P(λ)

where dµf ,g ,P is a measure defined as dµf ,g ,P(λ) = 〈EP(λ)f , g〉
where EP is the spectral measure (a projection valued measure) of
P.
Corrolary 2
If P is self-adjoint, then:

πn(A) = π0Pn(A) =
∫

sp(P)
λnd 〈E (λ)f0,1A〉

⇒ since the spectrum is continuous it is not clear how to exhibit a
similar decomposition than in the compact case.
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Discussion

spectral analysis of CTMC allows to derive reliable statistics
giving insight on the process of interest:

a spectral gap between the second and third eigenvalue (a ratio
of 10) seems to support a two state approximation (simulation)
but it is not true that if two models have two spectral gaps
γ1, γ2 such that γ1 < γ2 then model 2 will yield a better two
state approximation than model 1

Interestingly, this analysis is very similar for Markov operator
used to simulate Markov chains in MCMC algorithms

looks promising if the operator is compact
more work if we remove this assumption

the decomposition of the MCMC distribution allows an
interpretation of the chain dynamics in terms of flux of
probability mass between high density regions
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